, 15:19 | Cite as

NMR metabolic profiling of follicular fluid for investigating the different causes of female infertility: a pilot study

  • Maria Antonietta Castiglione Morelli
  • Assunta Iuliano
  • Sergio Crescenzo Antonio Schettini
  • Donatina Petruzzi
  • Angela Ferri
  • Paola Colucci
  • Licia Viggiani
  • Flavia Cuviello
  • Angela OstuniEmail author
Original Article



Several metabolomics studies have correlated follicular fluid (FF) metabolite composition with oocyte competence to fertilization, embryo development and pregnancy but there is a scarcity of research examining the metabolic effects of various gynaecological diseases.


In this study we aimed to analyze and correlate the metabolic profile of FF from women who were following in vitro fertilization (IVF) treatments with their different infertility pathologies.


We selected 53 women undergoing IVF who were affected by: tubal diseases, unexplained infertility, endometriosis, polycystic ovary syndrome (PCOS). FF of the study participants was collected at the time of oocytes retrieval. Metabolomic analysis of FF was performed by nuclear magnetic resonance (NMR) spectroscopy.


FF presents some significant differences in various infertility pathologies. Although it was not possible to discriminate between FF of control participants and women with tubal diseases and unexplained infertility, comparison of FF metabolic profile from control women with patients with endometriosis and PCOS revealed significant differences in some metabolites that can be correlated to the causes of infertility.


NMR-based metabolic profiling may be successfully applied to find diagnostic biomarkers for PCOS and endometriosis and it might be also used to predict oocyte developmental potential and subsequent outcome.


Metabolomics Follicular fluid NMR spectroscopy Gynaecological pathologies Infertility factors In vitro fertilization (IVF) 


Author contributions

SS, AI, and AO designed the study. AI selected the participants and executed oocyte retrieval. DP executed oocyte retrieval. AF identified oocytes in follicular fluid and executed their fertilization. PC selected the follicular fluids to be used for metabolomic analyses. CM performed the analysis of NMR data and multivariate analysis. LV run the NMR experiments. FC performed statistical analysis. AO, AI, and CM were responsible for conducting the study and writing the manuscript which was critically discussed, edited and approved by all co-authors.


The authors received no financial support for this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Research involving human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional, national research committee and with the 1964 Helsinki Declaration and its later amendments.

Supplementary material

11306_2019_1481_MOESM1_ESM.pdf (562 kb)
Supplementary material 1 (PDF 562 KB)


  1. Ahn, S. H., Singh, V., & Tayade, C. (2017). Biomarkers in endometriosis: Challenges and opportunities. Fertility and Sterility, 107(3), 523–532. Scholar
  2. Arya, B. K., Haq, U., A., & Chaudhury, K. (2012). Oocyte quality reflected by follicular fluid analysis in polycystic ovary syndrome (PCOS): A hypothesis based on intermediates of energy metabolism. Medical Hypotheses, 78(4), 475–478. Scholar
  3. Azziz, R. (2004). PCOS: a diagnostic challenge. Reproductive BioMedicine Online, 8(6), 644–648. Scholar
  4. Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols. 2(11), 2692–2703. CrossRefPubMedGoogle Scholar
  5. Bracewell-Milnes, T., Saso, S., Abdalla, H., Nikolau, D., Norman-Taylor, J., Johnson, M., et al. (2017). Metabolomics as a tool to identify biomarkers to predict and improve outcomes in reproductive medicine: A systematic review. Human Reproduction Update, 23(6), 723–736. Scholar
  6. Bulun, S. E. (2009). Endometriosis. New England Journal of Medicine, 360, 268–279. Scholar
  7. Castiglione Morelli, M. A. Iuliano, A., Schettini, S. C. A., Petruzzi, D., Ferri, A., Colucci, P., Viggiani, L., Cuviello, F., & Ostuni, A. (2018). NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation. Journal of Assisted Reproduction and Genetics. Scholar
  8. Chen, Y. H., Heneidi, S., Lee, J. M., Layman, L. C., Stepp, D. W., Gamboa, G. M., et al. (2013). miRNA-93 inhibits GLUT4 and is over-expressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 62(7), 2278–2286. Scholar
  9. Cordeiro, F. B., Cataldi, T. R., Perkel, K. J.,, Rochetti, L., Stevanato, R. C., do Vale Teixeira da Costa J., et al (2015). Lipidomics analysis of follicular fluid by ESI-MS reveals potential biomarkers for ovarian endometriosis. Journal of Assisted Reproduction and Genetics, 32(12), 1817–1825. Scholar
  10. Dumesic, D. A., Oberfield, S. E., Stener-Victorin, E., Marshall, J. C., Laven, J. S., & Legro, R. S. (2015). Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocrine Reviews, 36(5), 487–525. Scholar
  11. Dun, E. C., & Nezhat, C. H. (2012). Tubal factor: diagnosis and management in the era of assisted reproductive technology. Obstetrics and Gynecology Clinics of North America, 39, 551–566. Scholar
  12. Dutta, M., Joshi, M., Srivastava, S., Lodh, I., Chakravarty, B., & Chaudhury, K. (2012). A metabonomics approach as a means for identification of potential biomarkers for early diagnosis of endometriosis. Molecular BioSystems, 8, 3281–3287. Scholar
  13. Emwas, A. H., Luchinat, C., Turano, P., Tenori, L., Roy, R., Salek, R. M., et al. (2015). Standardizing the experimental conditions for using urine in NMR-based metabolomics studies with a particular focus on diagnostic studies: A review. Metabolomics, 11, 872–894. Scholar
  14. Engmann, L., Maconochie, N., Sladkevicius, P., Bekir, J., Campbell, S., & Tan, S. L. (1999). The outcome of in-vitro fertilization treatment in women with sonographic evidence of polycystic ovarian syndrome. Human Reproduction, 14(1), 167–171. Scholar
  15. Fahiminiya, S., & Gérard, N. (2010). Le liquide folliculaire chez les mammifères. Gynécologie Obstétrique & Fertilité, 38, 402–404. Scholar
  16. Fassbender, A., Burney, R. O., Dorien, F. O., D’Hooghe, T., & Giudice, L. (2015). Update on biomarkers for the detection of endometriosis. Biomed Research International. Scholar
  17. Hayek, S. E., Bitar, L., Hamdar, L. H., Mirza, F. G., & Daoud, G. (2016). Poly cystic ovarian syndrome: an updated overview. Frontiers in Physiology, 7, 124. Scholar
  18. Karaer, A., Tuncay, G., Mumcu, A., & Dogan, B. (2018). Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Systems Biology in Reproductive Medicine. Scholar
  19. Kirkegaard, K., Svane, A. S. P., Nielsen, J. S., Hindkjær, J. J., Nielsen, N. C., & Ingerslev, H. J. (2014). Nuclear magnetic resonance metabolic profiling of day 3 and 5 embryo culture medium does not predict pregnancy outcome in good prognosis patients: A prospective cohort study on single transferred embryos. Human Reproduction, 29(11), 2413–2420. Scholar
  20. La Marca, A., Grisendi, V., Giulini, S., Argento, C., Tirelli, A., Dondi, G., et al. (2013). Individualization of the FSH starting dose in IVF/ICSI cycles using the antral follicle count. Journal of Ovarian Research, 6, 11. Scholar
  21. Li, H. W., Lee, V. C., Lau, E. Y., Yeung, W. S., Ho, P. C., & Ng, E. H. (2014). Cumulative live-birth rate in women with polycystic ovary syndrome or isolated polycystic ovaries undergoing in-vitro fertilisation treatment. Journal of Assisted Reproduction and Genetics, 31(2), 205–211. Scholar
  22. Mamas, M., Dunn, W. B., Neyes, L., & Goodacre, R. (2011). The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 85(1), 5–17. Scholar
  23. Markley, J. L., Brüschweiler, R., Edison, A. S., Eghbalnia, H. R., Powers, R., Raftery, D., et al. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology, 43, 34–40. Scholar
  24. Matarese, G., De Placido, G., Nikas, Y., & Alviggi, C. (2003). Pathogenesis of endometriosis: Natural immunity dysfunction or autoimmune disease? Trends in Molecular Medicine, 9(5), 223–228. Scholar
  25. May, K. E., Conduit-Hulbert, S. A., Villar, J., Kirtley, S., Kennedy, S. H., & Becker, C. M. (2010). Pheripheral biomarkers of endometriosis: A systematic review. Human Reproduction Update, 16(6), 651–674. Scholar
  26. McRae, C., Baskind, N. E., Orsi, N. M., Sharma, V., & Fisher, J. (2012). Metabolic profiling of follicular fluid and plasma from natural cycle in vitro fertilization patients-a pilot study. Fertility and Sterility, 98(6), 1449–1457. Scholar
  27. McRae, C., Sharma, V., & Fisher, J. (2013) Metabolite profiling in the pursuit of biomarkers for IVF outcome: The case for metabolomics studies. International Journal of Reproductive Medicine. Scholar
  28. Murri, M., Insenser, M., & Escobar-Morreale, H. F. (2013). Metabolomics in polycystic ovary syndrome. Clinica Chimica Acta, 429, 181–188. Scholar
  29. Nadal-Desbarats, L., Veau, S., Blasco, H., Emond, P., Royere, D., Andres, C. R., et al. (2013). Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection? Magnetic Resonance Materials in Physics, Biology and Medicine, 26(2), 193–202. Scholar
  30. Nagana Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics: A review. Expert Review of Molecular Diagnostics, 8(5), 617–633. Scholar
  31. Nel-Themaat, L., & Nagy, Z. P. (2011). A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta, 32, 257–263. Scholar
  32. O’Gorman, A., Wallace, M., Cottell, E., Gibney, M. J., McAuliffe, F. M., Wingfield, M., et al. (2013). Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction, 146(4), 389–395. Scholar
  33. Palomba, S., Daolio, J., & La Sala, G. B. (2017). Oocyte competence in women with polycystic ovary syndrome. Trends in Endocrinology and Metabolism, 28(3), 186–198. Scholar
  34. Pan, J. X., Zhang, J. Y., Ke, Z. H., Wang, F. F., Barry, J. A., Hardiman, P. J., & Qu, F. (2015). Androgens as double-edged swords: Induction and suppression of follicular development. Hormones, 14(2), 190–200. Scholar
  35. Piñero-Sagredo, E., Nunes, S., de los Santos, M. J., Celda, B., & Esteve, V. (2010). NMR metabolic profile of human follicular fluid. NMR in Biomedicine, 23, 485–495. Scholar
  36. Ray, A., Shah, A., Gudi, A., & Homburg, R. (2012). Unexplained infertility: an update and review of practice. Reproductive Biomedicine Online, 24, 591–602. Scholar
  37. Revelli, A., Delle Piane, L., Casano, S., Molinari, E., Massobrio, M., & Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reproductive Biology and Endocrinology, 7, 40.CrossRefGoogle Scholar
  38. RoyChoudhury, S., Mishra, B. P., Khan, T., Chattopadhayay, R., Lodh, I., Ray, D., C., et al (2016). Serum metabolomics of Indian women with polycystic ovary syndrome using 1H NMR coupled with a pattern recognition approach. Molecular Biosystems, 12(11), 3407–3416. Scholar
  39. Santonastaso, M., Pucciarelli, A., Costantini, S., Caprio, F., Sorice, A., Capone, F., et al. (2017). Metabolomic profiling and biochemical evaluation of the follicular fluid of endometriosis patients. Molecular Biosystems, 13, 1213–1222. Scholar
  40. Singh, R., & Sinclair, K. D. (2007). Metabolomics: Approaches to assessing oocyte and embryo quality. Theriogenology, 68S, S56–62. Scholar
  41. The American Fertility Society. (1985). Revised American Fertility Society classification of endometriosis: 1985. Fertility and Sterility, 43, 351–352. Scholar
  42. Wallace, M., Cottell, E., Gibney, M. J., McAuliffe, F. M., Wingfield, M., & Brennan, L. (2012). An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertility and Sterility, 97(5), 1078–1084. Scholar
  43. Xia, L., Zhao, X., Sun, Y., Hong, Y., Gao, Y., & Hu, S. (2014). Metabolomic profiling of human follicular fluid from patients with repeated failure of in vitro fertilization using gas chromatography/mass spectrometry. International Journal of Clinical and Experimental Pathology, 7(10), 7220–7229.PubMedPubMedCentralGoogle Scholar
  44. Zhang, Y., Liu, L., Yin, T. L., Yang, J., & Xiong, C. L. (2017). Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget, 8(46), 80472–80480. Scholar
  45. Zhao, H., Zhao, Y., Li, T., Li, M., Li, J., Li, R., et al. (2015). Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radical Biology and Medicine, 86, 295–307. Scholar
  46. Zullo, F., Spagnolo, E., Saccone, G., Acunzo, M., Xodo, S., Ceccaroni, M., et al. (2017). Endometriosis and obstetrics complications: A systematic review and meta-analysis. Fertility and Sterility, 108(4), 667–672. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria Antonietta Castiglione Morelli
    • 1
  • Assunta Iuliano
    • 2
  • Sergio Crescenzo Antonio Schettini
    • 2
  • Donatina Petruzzi
    • 2
  • Angela Ferri
    • 2
  • Paola Colucci
    • 2
  • Licia Viggiani
    • 1
  • Flavia Cuviello
    • 1
  • Angela Ostuni
    • 1
    Email author
  1. 1.Department of SciencesUniversity of BasilicataPotenzaItaly
  2. 2.Center for Reproductive Medicine of “San Carlo” HospitalPotenzaItaly

Personalised recommendations