Advertisement

Metabolomics

, 15:15 | Cite as

Untargeted metabolomic analysis in non-fasted diabetic dogs by UHPLC–HRMS

  • A. L. O’KellEmail author
  • T. J. Garrett
  • C. Wasserfall
  • M. A. Atkinson
Short Communication

Abstract

Introduction

We recently identified variances in serum metabolomic profiles between fasted diabetic and healthy dogs, some having similarities to those identified in human type 1 diabetes.

Objectives

Compare untargeted metabolomic profiles in the non-fasted state.

Methods

Serum from non-fasted diabetic (n = 6) and healthy control (n = 6) dogs were analyzed by liquid chromatography-high resolution mass spectrometry.

Results

Clear clustering of metabolites between groups were observed, with multiple perturbations identified that were similar to those previously observed in fasted diabetic dogs.

Conclusion

These findings further support the development of targeted assays capable of detecting metabolites that may be useful as biomarkers of canine diabetes.

Keywords

Canine diabetes mellitus Untargeted metabolomics Type 1 diabetes Metabolites Biomarkers Ultra high performance liquid chromatography High resolution mass spectrometry 

Notes

Author contributions

ALO conceived of the study, collected the data, analyzed and interpreted the data, and wrote the manuscript; TJG conducted the analytical measurements, performed statistical analysis, analyzed and interpreted the data, and wrote the manuscript. CW conceived of the study, analyzed and interpreted the data, contributed to the discussion, and reviewed/edited the manuscript; MAA conceived of the study, contributed to discussion and reviewed/edited the manuscript.

Funding

This study was funded by grants from the National Institutes of Health: P01 AI42288 (MAA), U24 DK097209 (TJG), K08DK116735 (ALO), and KL2TR001429 (ALO).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

11306_2019_1477_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 KB)
11306_2019_1477_MOESM2_ESM.pptx (38 kb)
Supplementary material 2 (PPTX 37 KB)

References

  1. Deac, O. M., Mills, J. L., Shane, B., Midttun, Ø, Ueland, P. M., Brosnan, J. T., Brosnan, M. E., Laird, E., Gibney, E. R., Fan, R., Wang, Y., Brody, L. C., & Molloy, A. M. (2015). Tryptophan catabolism and vitamin B-6 status are affected by gender and lifestyle factors in healthy young adults. Journal of Nutrition, 145, 701–707.CrossRefGoogle Scholar
  2. Dutta, T., Kudva, Y. C., Persson, X. M., Schenck, L. A., Ford, G. C., Singh, R. J., Carter, R., & Nair, K. S. (2016). Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. The Journal of Clinical Endocrinology and Metabolism, 101, 1023–1033.CrossRefGoogle Scholar
  3. Emwas, A.-H. M. (2015). The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Bjerrum, J. (Ed.), Metabonomics. Methods in molecular biology. New York: Humana Press.Google Scholar
  4. Fall, T., Holm, B., Karlsson, A., Ahlgren, K. M., Kämpe, O., & Von Euler, H. (2008). Glucagon stimulation test for estimating endogenous insulin secretion in dogs. Veterinary Record, 163, 266–270.CrossRefGoogle Scholar
  5. Gar, C., Rottenkolber, M., Prehn, C., Adamski, J., Seissler, J., & Lechner, A. (2018). Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Critical Reviews in Clinical Laboratory Sciences, 55, 21–32.CrossRefGoogle Scholar
  6. Gilor, C., Niessen, S. J., Furrow, E., & Dibartola, S. P. (2016). What’s in a name? Classification of diabetes mellitus in veterinary medicine and why it matters. Journal of Veterinary Internal Medicine, 30, 927–940.CrossRefGoogle Scholar
  7. Giltay, E. J., Bunck, M. C., Gooren, L. J., Zitman, F. G., Diamant, M., & Teerlink, T. (2008). Effects of sex steroids on the neurotransmitter-specific aromatic amino acids phenylalanine, tyrosine, and tryptophan in transsexual subjects. Neuroendocrinology, 88, 103–110.CrossRefGoogle Scholar
  8. Gookin, J. L., Mathews, K. G., Cullen, J., & Seiler, G. (2018). Qualitative metabolomics profiling of serum and bile from dogs with gallbladder mucocele formation. PLoS ONE, 13, e0191076.CrossRefGoogle Scholar
  9. Guasch-Ferré, M., Hruby, A., Toledo, E., Clish, C. B., Martínez-González, M. A., Salas-Salvadó, J., & Hu, F. B. (2016). Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care, 39, 833–846.CrossRefGoogle Scholar
  10. Li, Q., Freeman, L. M., Rush, J. E., Huggins, G. S., Kennedy, A. D., Labuda, J. A., Laflamme, D. P., & Hannah, S. S. (2015). Veterinary medicine and multi-omics research for future nutrition targets: Metabolomics and transcriptomics of the common degenerative mitral valve disease in dogs. OMICS, 19, 461–470.CrossRefGoogle Scholar
  11. Liu, J. J., Liu, S., Gurung, R. L., Ching, J., Kovalik, J. P., Tan, T. Y., & Lim, S. C. (2018). Urine tricarboxylic acid cycle metabolites predict progressive chronic kidney disease in type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 103, 4357–4364.CrossRefGoogle Scholar
  12. Minamoto, Y., Otoni, C. C., Steelman, S. M., Büyükleblebici, O., Steiner, J. M., Jergens, A. E., & Suchodolski, J. S. (2015). Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes, 6, 33–47.CrossRefGoogle Scholar
  13. Montgomery, T. M., Nelson, R. W., Feldman, E. C., Robertson, K., & Polonsky, K. S. (1996). Basal and glucagon-stimulated plasma C-peptide concentrations in healthy dogs, dogs with diabetes mellitus, and dogs with hyperadrenocorticism. Journal of Veterinary Internal Medicine, 10, 116–122.CrossRefGoogle Scholar
  14. Moriya, T., Satomi, Y., & Kobayashi, H. (2018). Metabolomics of postprandial plasma alterations: A comprehensive Japanese study. Journal of Biochemistry, 163, 113–121.CrossRefGoogle Scholar
  15. Nelson, R. W., & Reusch, C. E. (2014). Animal models of disease: Classification and etiology of diabetes in dogs and cats. Journal of Endocrinology, 222, T1–T9.CrossRefGoogle Scholar
  16. O’Kell, A. L., Garrett, T. J., Wasserfall, C., & Atkinson, M. A. (2017a). Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human type 1 diabetes. Scientific Reports, 7, 9467.CrossRefGoogle Scholar
  17. O’Kell, A. L., Wasserfall, C., Catchpole, B., Davison, L. J., Hess, R. S., Jushner, J., & Atkinson, M. A. (2017b). Comparative pathogenesis of autoimmune diabetes in humans, NOD mice, and canines: Has a valuable animal model of type 1 diabetes been overlooked? Diabetes, 66, 1443–1452.CrossRefGoogle Scholar
  18. Oresic, M., Simell, S., Sysi-Aho, M., Näntö-Salonen, K., Seppänen-Laakso, T., Parikka, V., Katajamaa, M., Hekkala, A., Mattila, I., Keskinen, P., Yetukuri, L., Reinikainen, A., Lähde, J., Suortti, T., Hakalax, J., Simell, T., Hyöty, H., Veijola, R., Ilonen, J., Lahesmaa, R., Knip, M., & Simell, O. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 205, 2975–2984.CrossRefGoogle Scholar
  19. Overgaard, A. J., Kaur, S., & Pociot, F. (2016). Metabolomic biomarkers in the progression to type 1 diabetes. Current Diabetes Reports, 16, 127.CrossRefGoogle Scholar
  20. Oxenkrug, G., Van der Hart, M., & Summergrad, P. (2015). Elevated anthranilic acid plasma concentrations in type 1 but not type 2 diabetes mellitus. Integrative Molecular Medicine, 2, 365–368.CrossRefGoogle Scholar
  21. Oxenkrug, G. F. (2015). Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Molecular Neurobiology, 52, 805–810.CrossRefGoogle Scholar
  22. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.CrossRefGoogle Scholar
  23. Rochette, L., Ghibu, S., Muresan, A., & Vergely, C. (2015). Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Canadian Journal of Physiology and Pharmacology, 93, 1021–1027.CrossRefGoogle Scholar
  24. Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., Saude, E. J., Lix, B., Adamko, D. J., Shah, S., Greiner, R., Sykes, B. D., & Marrie, T. J. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79, 6995–7004.CrossRefGoogle Scholar
  25. Söder, J., Hagman, R., Dicksved, J., Lindåse, S., Malmlöf, K., Agback, P., Moazzami, A., Höglund, K., & Wernersson, S. (2017). The urine metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge. PLoS ONE, 12, e0180086.CrossRefGoogle Scholar
  26. Williams, D. L. (2017). Effect of oral alpha lipoic acid in preventing the genesis of canine diabetic cataract: A preliminary study. Veterinary Sciences.  https://doi.org/10.3390/vetsci4010018.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Xu, F., Tavintharan, S., Sum, C. F., Woon, K., Lim, S. C., & Ong, C. N. (2013). Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. The Journal of Clinical Endocrinology and Metabolism, 98, E1060–E1065.CrossRefGoogle Scholar
  28. Yao, J., Lu, H., Wang, Z., Wang, T., Fang, F., Wang, J., Yu, J., & Gao, R. (2018). A sensitive method for the determination of the gender difference of neuroactive metabolites in tryptophan and dopamine pathways in mouse serum and brain by UHPLC-MS/MS. Journal of Chromatography B, 1093–1094, 91–99.CrossRefGoogle Scholar
  29. Yokoi, N., Beppu, M., Yoshida, E., Hoshikawa, R., Hidaka, S., Matsubara, T., Shinohara, M., Irino, Y., Hatano, N., & Seino, S. (2015). Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes. Metabolomics, 11, 1277–1286.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Small Animal Clinical Sciences, College of Veterinary MedicineThe University of FloridaGainesvilleUSA
  2. 2.Department of Pathology, Immunology, and Laboratory MedicineThe University of FloridaGainesvilleUSA
  3. 3.Department of Pathology, Immunology, and Laboratory MedicineThe University of Florida Diabetes InstituteGainesvilleUSA
  4. 4.Departments of Pathology, Immunology and Laboratory Medicine, and PediatricsThe University of Florida Diabetes InstituteGainesvilleUSA

Personalised recommendations