Advertisement

Metabolomics

, 15:13 | Cite as

UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer’s disease cell model induced by Aβ1–42

  • Mingyong Zhang
  • Yue Liu
  • Min Liu
  • Biying Liu
  • Na Li
  • Xin Dong
  • Zhanying HongEmail author
  • Yifeng Chai
Original Article

Abstract

Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder with neither definitive pathogenesis nor effective therapy so far. Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is used extensively in Alzheimer’s disease treatment to ameliorate the symptoms, but the underlying mechanism remains to be clarified.

Objectives

To investigate potential biomarkers for AD and elucidate the protective mechanism of Danshen on AD cell model.

Methods

An ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS)-based approach combined with partial least squares discriminant analysis (PLS-DA) has been developed to discriminate the metabolic modifications between human brain microvascular endothelial cell (hBMEC) and AD cell model induced by amyloid-β protein (Aβ1–42). To further elucidate the pathophysiology of AD, related metabolic pathways have been studied.

Results

Thirty-three distinct potential biomarkers were screened out and considered as potential biomarkers corresponding to AD, which were mostly improved and partially restored back to normalcy in Danshen pre-protection group. It was found that AD was closely related to disturbed arginine and proline metabolism, glutathione metabolism, alanine aspartate and glutamate metabolism, histidine metabolism, pantothenate and CoA biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, citrate cycle and glycerophospholipid metabolism, and the protective mechanism of Danshen in AD cell model may be related to partially regulating the perturbed pathways.

Conclusions

These outcomes provide valuable evidences for therapeutic mechanism investigation of Danshen in AD treatment, and such an approach could be transferred to unravel the mechanism of other traditional Chinese medicine (TCM) and diseases.

Keywords

Danshen Human brain microvascular endothelial cell Alzheimer’s disease Cell metabolomics Metabolic profiling Ultra high performance liquid chromatography–quadrupole time of flight mass spectrometry 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC; 81673386; 81703674) and Medical Science and Technique Foundation for Youths (16QNP088).

Author contributions

ZMY, LY, CYF and HZY conceived and designed the experiments, LBY performed sample preparation, LN and DX performed the UHPLC-MS/MS experiments. The data analysis was performed by ZMY and LM. ZMY and LY wrote the paper. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

11306_2019_1473_MOESM1_ESM.doc (16.8 mb)
Supplementary material 1 (DOC 17175 KB)
11306_2019_1473_MOESM2_ESM.zip (3.5 mb)
Supplementary material 2 (ZIP 3572 KB)

References

  1. Akterin, S., Cowburn, R. F., Miranda-Vizuete, A., Jimenez, A., Bogdanovic, N., Winblad, B., et al. (2006). Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer’s disease. Cell Death & Differentiation, 13(9), 1454–1465.CrossRefGoogle Scholar
  2. Armirotti, A., Basit, A., Realini, N., Caltagirone, C., Bossu, P., Spalletta, G., et al. (2014). Sample preparation and orthogonal chromatography for broad polarity range plasma metabolomics: Application to human subjects with neurodegenerative dementia. Analytical Biochemistry, 455(1), 48–54.PubMedCrossRefGoogle Scholar
  3. Association, A. s. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14, 367–429.CrossRefGoogle Scholar
  4. Auld, D. S., Kornecook, T. J., Bastianetto, S., & Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68(3), 209–245.PubMedCrossRefGoogle Scholar
  5. Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. The Journal of Biological Chemistry, 390(3), 191–214.Google Scholar
  6. Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567–574.PubMedCrossRefGoogle Scholar
  7. Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. The Lancet, 368(9533), 387–403.CrossRefGoogle Scholar
  8. Butterfield, D. A., Swomley, A. M., & Sultana, R. (2013). Amyloid beta-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxidants & Redox Signaling, 19(8), 823–835.CrossRefGoogle Scholar
  9. Cardoso, S. M., & Oliveira, C. R. (2003). Glutathione cycle impairment mediates A beta-induced cell toxicity. Free Radical Research, 37(3), 241–250.PubMedCrossRefGoogle Scholar
  10. Chan, Y.-J., Chen, W.-J., Wan, W.-B., Chen, Y.-J., Li, Y.-M., & Zhang, C.-Y. (2018). Aβ1–42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd.3 cells. Experimental Cell Research, 369(2), 266–274.PubMedCrossRefGoogle Scholar
  11. Choi, B. H. (1995). Oxidative stress and Alzheimer’s disease. Neurobiology of Aging, 16(4), 675–678.PubMedCrossRefGoogle Scholar
  12. Commission, C. P. (2015). Pharmacopoeia of the People’s Republic of China. Beijing: China Medical Science Press.Google Scholar
  13. Contestabile, A. (2011). The history of the cholinergic hypothesis. Behavioural Brain Research, 221(2), 334–340.PubMedCrossRefGoogle Scholar
  14. D’Aniello, A., Fisher, G., Migliaccio, N., Cammisa, G., D’Aniello, E., & Spinelli, P. (2005). Amino acids and transaminases activity in ventricular CSF and in brain of normal and Alzheimer patients. Neuroscience Letters, 388(1), 49–53.PubMedCrossRefGoogle Scholar
  15. Grimm, M. O. W., Grösgen, S., Riemenschneider, M., Tanila, H., Grimm, H. S., & Hartmann, T. (2011). From brain to food: Analysis of phosphatidylcholins, lyso-phosphatidylcholins and phosphatidylcholin-plasmalogens derivates in Alzheimer’s disease human post mortem brains and mice model via mass spectrometry. Journal of Chromatography A, 1218, 7713–7722.PubMedCrossRefGoogle Scholar
  16. Gulaj, E., Pawlak, K., Bien, B., & Pawlak, D. (2010). Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci, 55(2), 204–211.PubMedCrossRefGoogle Scholar
  17. Gupta, A., & Goyal, R. (2016). Amyloid beta plaque: a culprit for neurodegeneration. Acta Neurologica Belgica, 116(4), 445–450.PubMedCrossRefGoogle Scholar
  18. Han, B., Tang, R., Han, D., Wang, F., Zhao, S., & Xu, M. (2009). P01-94 Effects of Chinese herb Danshen-Dahuang on hippocampal gene expression of APP and PS1 in rats with Alzheimer disease. European Psychiatry, 24(09), S482.CrossRefGoogle Scholar
  19. Hicks, J. B., Lai, Y., Sheng, W., Yang, X., Zhu, D., Sun, G.-Y., et al. (2008). Amyloid-β peptide induces temporal membrane biphasic changes in astrocytes through cytosolic phospholipase A2. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778, 2512–2519.CrossRefGoogle Scholar
  20. Howes, M. R., Fang, R., & Houghton, P. J. (2017). Effect of Chinese herbal medicine on Alzheimer’s disease. International Review of Neurobiology, 135, 29–56.PubMedCrossRefGoogle Scholar
  21. Huang, X., Moir, R. D., Tanzi, R. E., Bush, A. I., & Rogers, J. T. (2004). Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Annals of the New York Academy of Sciences, 1012(1), 153–163.PubMedCrossRefGoogle Scholar
  22. Hügel, H. M., & Jackson, N. (2014). Danshen diversity defeating dementia. Bioorganic & Medicinal Chemistry Letters, 24(3), 708–716.CrossRefGoogle Scholar
  23. Ibanez, C., Simo, C., Barupal, D. K., Fiehn, O., Kivipelto, M., & Cedazo-Minguez, A. (2013). A new metabolomic workflow for early detection of Alzheimer’s disease. Journal of Chromatography A, 1302, 65–71.PubMedCrossRefGoogle Scholar
  24. Iuvone, T., De Filippis, D., Esposito, G., D’Amico, A., & Izzo, A. A. (2006). The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 317(3), 1143–1149.PubMedCrossRefGoogle Scholar
  25. Jackson, T. C., Zhang, Y. V., Sime, P. J., Phipps, R. P., & Kottmann, R. M. (2017). Development of an accurate and sensitive method for lactate analysis in exhaled breath condensate by LC MS/MS. Journal of Chromatography B, 1061–1062, 468–473.CrossRefGoogle Scholar
  26. Jhang, K. A., Lee, E. O., Kim, H.-S., & Chong, Y. H. (2014). Norepinephrine provides short-term neuroprotection against Aβ1–42 by reducing oxidative stress independent of Nrf2 activation. Neurobiology of Aging, 35(11), 2465–2473.PubMedCrossRefGoogle Scholar
  27. Jiang, W.-Y., Gao, L., Li, P.-D., Kan, H., Qu, J.-L., Men, L.-H., et al. (2017). Metabonomics study of the therapeutic mechanism of fenugreek galactomannan on diabetic hyperglycemia in rats, by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B, 1044–1045, 8–16.CrossRefGoogle Scholar
  28. Kesavapany, S., Li, B. S., Amin, N., Zheng, Y. L., Grant, P., & Pant, H. C. (2004). Neuronal cyclin-dependent kinase 5: Role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochimica et Biophysica Acta, 1697, 143–153.PubMedCrossRefGoogle Scholar
  29. Li, J.-Y., Liu, Y., Li, W., Wang, Z., Guo, P., Li, L., et al. (2018). Metabolic profiling of the effects of ginsenoside Re in an Alzheimer’s disease mouse model. Behavioural Brain Research, 337, 160–172.PubMedCrossRefGoogle Scholar
  30. Li, N.-J., Liu, Y., Li, W., Zhou, L., Li, Q., Wang, X.-Q., et al. (2016). A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer’s disease. Journal of Ginseng Research, 40(1), 9–17.PubMedCrossRefGoogle Scholar
  31. Li, N.-J., Zhou, L., Li, W., Liu, Y., Wang, J.-H., & He, P. (2015). Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: a metabolomics study. Journal of Chromatography B, 985, 54–61.CrossRefGoogle Scholar
  32. Lin, W.-W., Zhang, J.-M., Liu, Y.-M., Wu, R.-J., Yang, H.-S., Hu, X.-B., et al. (2017). Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. European Journal of Pharmaceutical Sciences, 105, 119–126.PubMedCrossRefGoogle Scholar
  33. Lin, Y.-H., Liu, A.-H., Wu, H.-L., Westenbroek, C., Song, Q.-L., Yu, H.-M., et al. (2006). Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents Abeta(25–35)-induced reduction in BPRP in PC12 cells. Biochemical and Biophysical Research Communications, 348(2), 593–599.PubMedCrossRefGoogle Scholar
  34. Liu, P., Fleete, M. S., Jing, Y., Collie, N. D., Curtis, M. A., Waldvogel, H. J., et al. (2014). Altered arginine metabolism in Alzheimer’s disease brains. Neurobiology of Aging, 35(9), 1992–2003.PubMedCrossRefGoogle Scholar
  35. Liu, Y. (2012). Influence of Tongluo Jiunao injection on the oxidative stress and apoptosis of brain microvascular endothelial cells of primary rat induced by Aβ1–42. China Journal of Chinese Medicine, 27, 1297–1299.Google Scholar
  36. Liu, Y., Lu, S., Zhao, L., Dong, X., Zhu, Z.-Y., Jin, Y.-S., et al. (2018). Effects of glaucocalyxin A on human liver cancer cells as revealed by GC/MS- and LC/MS-based metabolic profiling. Analytical and Bioanalytical Chemistry, 410(14), 3325–3335.PubMedCrossRefGoogle Scholar
  37. Lorenz, M. A., Burant, C. F., & Kennedy, R. T. (2011). Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Analytical Chemistry, 83(9), 3406–3414.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lovell, M. A., & Markesbery, W. R. (2007). Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. Journal of Neuroscience Research, 85(14), 3036–3040.PubMedCrossRefGoogle Scholar
  39. Lu, S. C., Mato, J. M., Espinosa-Diez, C., & Lamas, S. (2016). MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radical Biology and Medicine, 100, 66–72.PubMedCrossRefGoogle Scholar
  40. Maione, F., Piccolo, M., De Vita, S., Chini, M. G., Cristiano, C., De Caro, C., et al. (2018). Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacological Research, 129, 482–490.PubMedCrossRefGoogle Scholar
  41. Miao, H., Chen, H., Pei, S., Bai, X., Vaziri, N. D., & Zhao, Y. Y. (2015). Plasma lipidomics reveal profound perturbation of glycerophospholipids, fatty acids, and sphingolipids in diet-induced hyperlipidemia. Chemico-Biological Interactions, 228, 79–87.PubMedCrossRefGoogle Scholar
  42. Oresic, M., Simell, S., Sysi-Aho, M., Nanto-Salonen, K., Seppanen-Laakso, T., Parikka, V., et al. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 205(13), 2975–2984.PubMedCrossRefGoogle Scholar
  43. Paglia, G., Stocchero, M., Cacciatore, S., Lai, S., Angel, P., Alam, M. T., et al. (2016). Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabolism. Journal of Proteome Research, 15(2), 608–618.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Qian, Y.-H., Xiao, Q.-L., & Xu, J. (2012). The protective effects of tanshinone IIA on beta-amyloid protein (1–42)-induced cytotoxicity via activation of the Bcl-xL pathway in neuron. Brain Research Bulletin, 88(4), 354–358.PubMedCrossRefGoogle Scholar
  45. Qin, R.-A., Yao, X.-X., & Huang, Z.-Y. (2012). Effects of Compound Danshen tablets on spatial cognition and expression of brain β-amyloid precursor protein in a rat model of alzheimer’s disease. Journal of Traditional Chinese Medicine, 32(1), 63–66.PubMedCrossRefGoogle Scholar
  46. Reed, J.-C., Zha, H., Aime-Sempe, C., Takayama, S., & Wang, H.-G. (1996). Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Advances in Experimental Medicine and Biology, 406, 99–112.PubMedCrossRefGoogle Scholar
  47. Schwarcz, R., Bruno, J. P., Muchowski, P. J., & Wu, H.-Q. (2012). Kynurenines in the mammalian brain: when physiology meets pathology. Nature Reviews Neuroscience, 13(7), 465–477.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Schwarz, M. J., Guillemin, G. J., Teipel, S. J., Buerger, K., & Hampel, H. (2013). Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. European Archives of Psychiatry and Clinical Neuroscience, 263(4), 345–352.PubMedCrossRefGoogle Scholar
  49. Ser, Z., Liu, X.-J., Tang, N. N., & Locasale, J. W. (2015). Extraction parameters for metabolomics from cultured cells. Analytical Biochemistry, 475, 22–28.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shi, L.-L., Yang, W.-N., Chen, X.-L., Zhang, J.-S., Yang, P.-B., Hu, X.-D., et al. (2012). The protective effects of tanshinone IIA on neurotoxicity induced by beta-amyloid protein through calpain and the p35/Cdk5 pathway in primary cortical neurons. Neurochemistry International, 61(2), 227–235.PubMedCrossRefGoogle Scholar
  51. Stelmashook, E. V., Lozier, E. R., Goryacheva, E. S., Mergenthaler, P., Novikova, S.V., Zorov, D. B., et al. (2010). Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity. Neuroscience Letters, 482(2), 151–155.PubMedCrossRefGoogle Scholar
  52. Sun, L., Jia, H., Ma, L., Yu, M., Yang, Y., Liu, Y., et al. (2018a). Metabolic profiling of hypoxia/reoxygenation injury in H9c2 cells reveals the accumulation of phytosphingosine and the vital role of Dan-Shen in Xin-Ke-Shu. Phytomedicine, 49, 83–94.PubMedCrossRefGoogle Scholar
  53. Sun, L.-M., Zhu, B.-J., Cao, H.-T., Zhang, X.-Y., Zhang, Q.-C., Xin, G.-Z., et al. (2018b). Explore the effects of Huang-Lian-Jie-Du-Tang on Alzheimer’s disease by UPLC-QTOF/MS-based plasma metabolomics study. Journal of Pharmaceutical and Biomedical Analysis, 151, 75–83.PubMedCrossRefGoogle Scholar
  54. Swerdlow, R. H., Burns, J. M., & Khan, S. M. (2014). The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochimica et Biophysica Acta, 1842(8), 1219–1231.PubMedCrossRefGoogle Scholar
  55. Tajima, Y., Ishikawa, M., Maekawa, K., Murayama, M., Senoo, Y., Nishimaki-Mogami, T., et al. (2013). Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. Lipids in Health and Disease, 12, 68–81.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Terrill-Usery, S. E., Colvin, B. A., Davenport, R. E., & Nichols, M. R. (2016). Aβ40 has a subtle effect on Aβ42 protofibril formation, but to a lesser degree than Aβ42 concentration, in Aβ42/Aβ40 mixtures. Archives of Biochemistry and Biophysics, 597, 1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Tsai, M. Y., Hu, W. L., Lin, C. C., Lee, Y. C., Chen, S. Y., Hung, Y. C., et al. (2017). Prescription pattern of Chinese herbal products for heart failure in Taiwan: A population-based study. International Journal of Cardiology, 228, 90–96.PubMedCrossRefGoogle Scholar
  58. Ulep, M. G., Saraon, S. K., & McLea, S. (2018). Alzheimer Disease. The Journal for Nurse Practitioners, 14, 129–135.CrossRefGoogle Scholar
  59. Widner, B., Leblhuber, F., Walli, J., Tilz, G. P., Demel, U., & Fuchs, D. (2000). Tryptophan degradation and immune activation in Alzheimer’s disease. Journal of Neural Transmission, 107(3), 343–353.PubMedCrossRefGoogle Scholar
  60. Wissmann, P., Geisler, S., Leblhuber, F., & Fuchs, D. (2013). Immune activation in patients with Alzheimer’s disease is associated with high serum phenylalanine concentrations. Journal of the Neurological Sciences, 329(1–2), 29–33.PubMedCrossRefGoogle Scholar
  61. Zhou, J., Fu, Y., & Tang, X.-C. (2001). Huperzine A and donepezil protect rat pheochromocytoma cells against oxygen–glucose deprivation. Neuroscience Letters, 306(1–2), 53–56.PubMedCrossRefGoogle Scholar
  62. Zhu, Y.-Y., Feng, Y., Shen, L., Xu, D.-S., Wang, B., Ruan, K.-F., et al. (2013). Effect of metformin on the urinary metabolites of diet-induced-obese mice studied by ultra performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF/MS). Journal of Chromatography B, 925, 110–116.CrossRefGoogle Scholar
  63. Zlokovic, B. V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nature Reviews Neuroscience, 12, 723–738.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PharmacySecond Military Medical UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory for Pharmaceutical Metabolite ResearchShanghaiChina
  3. 3.Department of Pharmacy, Changhai HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations