Advertisement

Metabolomics

, 15:10 | Cite as

Breath metabolome of mice infected with Pseudomonas aeruginosa

  • Giorgia Purcaro
  • Mavra Nasir
  • Flavio A. Franchina
  • Christiaan A. Rees
  • Minara Aliyeva
  • Nirav Daphtary
  • Matthew J. Wargo
  • Lennart K. A. Lundblad
  • Jane E. HillEmail author
Original Article

Abstract

Introduction

The measurement of specific volatile organic compounds in breath has been proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung infection in the breath field is that caused by Pseudomonas aeruginosa.

Objectives

To determine a discriminatory core of molecules in the “breath-print” of mice during a lung infection with four strains of P. aeruginosa (PAO1, PA14, PAK, PA7). Furthermore, we attempted to extrapolate a strain-specific “breath-print” signature to investigate the possibility of recapitulating the genetic phylogenetic groups (Stewart et al. Pathog Dis 71(1), 20–25, 2014.  https://doi.org/10.1111/2049-632X.12107).

Methods

Breath was collected into a Tedlar bag and shortly after drawn into a thermal desorption tube. The latter was then analyzed into a comprehensive multidimensional gas chromatography coupled with a time-of-flight mass spectrometer. Random forest algorithm was used for selecting the most discriminatory features and creating a prediction model.

Results

Three hundred and one molecules were significantly different between animals infected with P. aeruginosa, and those given a sham infection (PBS) or inoculated with UV-killed P. aeruginosa. Of those, nine metabolites could be used to discriminate between the three groups with an accuracy of 81%. Hierarchical clustering showed that the signature from breath was due to a specific response to live bacteria instead of a generic infection response. Furthermore, we identified ten additional volatile metabolites that could differentiate mice infected with different strains of P. aeruginosa. A phylogram generated from the ten metabolites showed that PAO1 and PA7 were the most distinct group, while PAK and PA14 were interspersed between the former two groups.

Conclusions

To the best of our knowledge, this is the first study to report on a ‘core’ murine breath print, as well as, strain level differences between the compounds in breath. We provide identifications (by running commercially available analytical standards) to five breath compounds that are predictive of P. aeruginosa infection.

Keywords

Breath Volatile organic compounds (VOCs) Pseudomonas aeruginosa Comprehensive gas chromatography-time-of-flight mass spectrometer (GC×GC ToF MS) 

Notes

Acknowledgements

Financial support for this work was provided by Hitchcock Foundation and the National Institutes of Health (NIH, Project # R21AI12107601). MN and CAR were supported by the Burroughs Wellcome Fund institutional program grant unifying population and laboratory based sciences to Dartmouth College (Grant#1014106). CAR was additionally supported by a T32 training grant (T32LM012204, PI: Tor D Tosteson).

Author contributions

Conception and design: GP, JEH, LKAL, MJW; Acquisition of the data: GP, MN, FAF, CR, AM, DN; Analysis and interpretation of the data: MN, GP, FAF; Writing and review of the manuscript: GP, MN, FAF, CR, MJW, LKAL, JEH.

Compliance with ethical standards

Conflict of interest

All authors report no potential conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Research involving animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

11306_2018_1461_MOESM1_ESM.docx (567 kb)
Supplementary material 1 (DOCX 566 KB)

References

  1. Bean, H. D., Jiménez-Díaz, J., Zhu, J., & Hill, J. E. (2015). Breathprints of model murine bacterial lung infections are linked with immune response. European Respiratory Journal, 45(1), 181–190.  https://doi.org/10.1183/09031936.00015814.CrossRefPubMedGoogle Scholar
  2. Bean, H. D., Rees, C. A., & Hill, J. E. (2016). Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. Journal of Breath Research, 10, 047102.  https://doi.org/10.1088/1752-7155/10/4/047102.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.CrossRefGoogle Scholar
  4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.  https://doi.org/10.1023/A:1010933404324.CrossRefGoogle Scholar
  5. Franchina, F. A., Mellors, T. R., Aliyeva, M., Wagner, J., Daphtary, N., Lundblad, L. K. A., et al. (2018). Towards the use of breath for detecting mycobacterial infection: A case study in a murine model. Journal of Breath Research, 12(2), 26008.  https://doi.org/10.1088/1752-7163/aaa016.CrossRefGoogle Scholar
  6. Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L., & Schomburg, D. (2010). How Pseudomonas aeruginosa adapts to various environments: A metabolomic approach. Environmental Microbiology, 12(6), 1734–1747.  https://doi.org/10.1111/j.1462-2920.2010.02253.x.CrossRefPubMedGoogle Scholar
  7. Giorgio, A., De Stradis, A., Lo Cantore, P., & Iacobellis, N. S. (2015). Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Frontiers in Microbiology, 6, 1056.  https://doi.org/10.3389/fmicb.2015.01056.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gisbert, J. P., & Pajares, J. M. (2004). Review article: 13C-urea breath test in the diagnosis of Helicobacter pylori infection—A critical review. Alimentary Pharmacology and Therapeutics, 20(10), 1001–1017.  https://doi.org/10.1111/j.1365-2036.2004.02203.x.CrossRefPubMedGoogle Scholar
  9. Goeminne, P. C., Vandendriessche, T., Van Eldere, J., Nicolai, B. M., Hertog, M. L., A., T., M., & Dupont, L. J. (2012). Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis. Respiratory Research, 13, 87.  https://doi.org/10.1186/1465-9921-13-87.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Haick, H., Broza, Y. Y., Mochalski, P., Ruzsanyi, V., & Amann, A. (2014). Assessment, origin, and implementation of breath volatile cancer markers. Chemical Society Reviews, 43, 1423–1449.  https://doi.org/10.1039/c3cs60329f.CrossRefPubMedGoogle Scholar
  11. Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., et al. (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14339–14344.  https://doi.org/10.1073/pnas.2036282100.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kharitonov, S. A., Yates, D., Robbins, R. A., Logan-Sinclair, R., Shinebourne, E. A., & Barnes, P. J. (1994). Increased nitric oxide in exhaled air of asthmatic patients. Lancet, 343(8890), 133–135.CrossRefGoogle Scholar
  13. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621.CrossRefGoogle Scholar
  14. Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes and Infection, 2(9), 1051–1060.  https://doi.org/10.1016/S1286-4579(00)01259-4.CrossRefPubMedGoogle Scholar
  15. Minamishima, Y., Takeya, K., Ohnishi, Y., & Amako, K. (1968). Physicochemical and biological properties of fibrous Pseudomonas bacteriophages. Journal of Virology, 2(3), 208–213.PubMedPubMedCentralGoogle Scholar
  16. Nasir, M., Bean, H. D., Smolinska, A., Rees, C. A., Zemanick, E. T., & Hill, J. E. (2018). Volatile molecules from bronchoalveolar lavage fluid can ‘rule-in’ Pseudomonas aeruginosa and ‘rule-out’ Staphylococcus aureus infections in cystic fibrosis patients. Scientific Reports, 8(1), 826.  https://doi.org/10.1038/S41598-017-18491-8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269.  https://doi.org/10.1038/nrm3314.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Phillips, M., Boehmer, J. P., Cataneo, R. N., Cheema, T., Greenberg, J., Kobashigawa, J., et al. (2004). Heart allograft rejection: Detection with breath alkanes in low levels (the HARDBALL Study) methods: Results. The Journal of heart and lung Transplantation, 23(6), 701–708.  https://doi.org/10.1016/j.healun.2003.07.017.CrossRefPubMedGoogle Scholar
  19. Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., & Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science, 268(5219), 1899–1902.CrossRefGoogle Scholar
  20. Robroeks, C. M. H. H. T., van Berkel, J. J. B. N., Dallinga, J. W., Jöbsis, Q., Zimmermann, L. J. I., Hendriks, H. J. E., et al. (2010). Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatric Research, 68(1), 75–80.  https://doi.org/10.1203/PDR.0b013e3181df4ea0.CrossRefPubMedGoogle Scholar
  21. Roy, P. H., Tetu, S. G., Larouche, A., Elbourne, L., Tremblay, S., Ren, Q., et al. (2010). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PloS ONE, 5(1), e8842.  https://doi.org/10.1371/journal.pone.0008842.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sethi, S., Nanda, R., & Chakraborty, T. (2013). Clinical application of volatile organic compound analysis for detecting infectious diseases. Clinical Microbiology Reviews, 26(3), 462–475.  https://doi.org/10.1128/CMR.00020-13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Shestivska, V., Spanel, P., Dryahina, K., Sovova, K., Smith, D., Musilek, M., & Nemec, A. (2012). Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. Journal of Applied Microbiology, 113, 701–713.  https://doi.org/10.1111/j.1365-2672.2012.05370.x.CrossRefPubMedGoogle Scholar
  24. Silkoff, P. E., Carlson, M., Bourke, T., Katial, R., Ögren, E., & Szefler, S. J. (2004). The Aerocrine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. The Journal of Allergy and Clinical Immunology, 114(5), 1241–1256.  https://doi.org/10.1016/j.jaci.2004.08.042.CrossRefPubMedGoogle Scholar
  25. Smolinska, A., Hauschild, A.-C., Fijten, R. R. R., Dallinga, J. W., Baumbach, J., & van Schooten, F. J. (2014). Current breathomics—A review on data pre-processing techniques and machine learning in metabolomics breath analysis. Journal of Breath Research, 8(2), 027105.  https://doi.org/10.1088/1752-7155/8/2/027105.CrossRefPubMedGoogle Scholar
  26. Stewart, L., Ford, A., Sangal, V., Jeukens, J., Boyle, B., Kukavica-Ibrulj, I., et al. (2014). Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathogens and Disease, 71(1), 20–25.  https://doi.org/10.1111/2049-632X.12107.CrossRefPubMedGoogle Scholar
  27. Tranchida, P. Q., Maimone, M., Purcaro, G., Dugo, P., & Mondello, L. (2015). The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography. TrAC Trends in Analytical Chemistry, 71, 74–84.  https://doi.org/10.1016/j.trac.2015.03.011.CrossRefGoogle Scholar
  28. Zhu, J., Bean, H. D., Jimenez-Diaz, J., & Hill, J. E. (2013a). Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. Journal of Applied Physiology, 114(11), 1544–1549.  https://doi.org/10.1152/japplphysiol.00099.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Zhu, J., Bean, H. D., Wargo, M. J., Leclair, L. W., & Hill, J. E. (2014). Detecting bacterial lung infections: In vivo evaluation of in vitro volatile fingerprints. Journal of Breath Research, 7(1), 016003.  https://doi.org/10.1088/1752-7155/7/1/016003.Detecting.CrossRefGoogle Scholar
  30. Zhu, J., Jiménez-Díaz, J., Bean, H. D., Daphtary, N. A., Aliyeva, M. I., Lundblad, L. K. A., & Hill, J. E. (2013b). Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: From initial infection to clearance. Journal of Breath Research, 7(3), 037106.  https://doi.org/10.1088/1752-7155/7/3/037106.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Giorgia Purcaro
    • 1
    • 2
  • Mavra Nasir
    • 3
  • Flavio A. Franchina
    • 1
    • 4
  • Christiaan A. Rees
    • 3
  • Minara Aliyeva
    • 5
  • Nirav Daphtary
    • 5
  • Matthew J. Wargo
    • 5
  • Lennart K. A. Lundblad
    • 6
    • 7
  • Jane E. Hill
    • 1
    • 3
    Email author
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  3. 3.Geisel School of MedicineDartmouth CollegeHanoverUSA
  4. 4.Department of ChemistryUniversity of LiègeLiège (Sart-Tilman)Belgium
  5. 5.Larner College of MedicineUniversity of VermontBurlingtonUSA
  6. 6.THORASYS Thoracic Medical Equipment Inc.MontrealCanada
  7. 7.Meakins-Christie LaboratoriesMcGill UniversityMontréalCanada

Personalised recommendations