Advertisement

Metabolomics

, 14:143 | Cite as

NMR-based metabolomics reveals that plant-derived smoke stimulates root growth via affecting carbohydrate and energy metabolism in maize

  • Şükrü Serter Çatav
  • Emine Sonay Elgin
  • Çağdaş Dağ
  • Jaime L. Stark
  • Köksal KüçükakyüzEmail author
Original Article
Part of the following topical collections:
  1. Plant metabolomics and lipidomics

Abstract

Introduction

It is well known that plant-derived smoke stimulates seed germination and seedling growth in many plants. Although a number of transcriptomics and proteomics studies have been carried out to understand the mode of action of smoke, less is known about the biochemical alterations associated with smoke exposure in plants.

Objectives

The aims of this study were (1) to determine the metabolic alterations in maize roots pre-treated with various concentrations of smoke solution, and (2) to identify the smoke-responsive metabolic pathways during early root growth period.

Methods

Maize seeds were pre-treated with different concentrations of smoke solutions for 24 h and then grown for 10 days. 600-MHz 1H NMR spectroscopy was performed on the aqueous root extracts of maize seedlings. The metabolite data obtained from the NMR spectra were analyzed by several statistical and functional methods, including one-way ANOVA, PCA, PLS-DA and pathway analysis.

Results

Our study identified a total of 29 metabolites belonging to various chemical groups. Concentrations of 20 out of these 29 metabolites displayed significant (p < 0.05) changes after at least one smoke pre-treatment compared to the control. Moreover, functional analyses revealed that smoke pre-treatments markedly affected the carbohydrate- and energy-related metabolic pathways, such as galactose metabolism, glycolysis, glyoxylate metabolism, tricarboxylic acid cycle, and starch/sucrose metabolism.

Conclusions

To our knowledge, this is the first study that investigates smoke-induced biochemical alterations in early root growth period using NMR spectroscopy. Our findings clearly indicate that smoke either directly or indirectly influences many metabolic processes in maize roots.

Keywords

Smoke Root growth NMR spectroscopy Metabolomics Maize 

Notes

Acknowledgements

This work is a part of Ph.D. thesis of the first author, funded by the Scientific Research Projects Coordination Unit of Muğla Sıtkı Koçman University (Grant Numbers: 13/02 and 15/153). This study made use of the National Magnetic Resonance Facility at Madison, which is supported by NIH Grant P41GM103399 (NIGMS), old number: P41RR002301. Equipment was purchased with funds from the University of Wisconsin-Madison, the NIH (P41GM103399, S10RR02781, S10RR08438, S10RR023438, S10RR025062, S10RR029220), the NSF (DMB-8415048, OIA-9977486, BIR-9214394), and the USDA.

Author contributions

ŞSÇ, ÇD, ESE and KK designed the experiments, ŞSÇ and ÇD performed the experiments, JLS and ÇD carried out the acquisition of the NMR data, ŞSÇ and ESE analyzed the data and wrote the first draft. All authors critically revised, read, and approved the final version of manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11306_2018_1440_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)

References

  1. Adkins, S. W., & Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Science Research, 11(3), 213–222.Google Scholar
  2. Aremu, A. O., Bairu, M. W., Finnie, J. F., & Van Staden, J. (2012). Stimulatory role of smoke–water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated ‘Williams’ bananas. Plant Growth Regulation, 67(3), 271–279.Google Scholar
  3. Aremu, A. O., Masondo, N. A., & Van Staden, J. (2014). Smoke–water stimulates secondary metabolites during in vitro seedling development in Tulbaghia species. South African Journal of Botany, 91, 49–52.Google Scholar
  4. Aslam, M. M., Jamil, M., Khatoon, A. A., Hendawy, S. E., Al-Suhaibani, N. A., Malook, I., et al. (2017). Physiological and biochemical responses of maize (Zea mays L.) to plant derived smoke solution. Pakistan Journal of Botany, 49(2), 435–443.Google Scholar
  5. Baldrianová, J., Černỳ, M., Novák, J., Jedelskỳ, P. L., Divíšková, E., & Brzobohatỳ, B. (2015). Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. Journal of Proteomics, 120, 7–20.PubMedGoogle Scholar
  6. Barding, G. A. Jr., Béni, S., Fukao, T., Bailey-Serres, J., & Larive, C. K. (2013). Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. Journal of Proteome Research, 12(2), 898–909.PubMedGoogle Scholar
  7. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry (5th ed.). New York: WH Freeman and Company.Google Scholar
  8. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., et al. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9(9), 418–425.PubMedGoogle Scholar
  9. Bond, W. J., & Keeley, J. E. (2005). Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20(7), 387–394.Google Scholar
  10. Brown, N. A. C., & Van Staden, J. (1997). Smoke as a germination cue: A review. Plant Growth Regulation, 22(2), 115–124.Google Scholar
  11. Çatav, ŞS., Küçükakyüz, K., Akbaş, K., & Tavşanoğlu, Ç (2014). Smoke-enhanced seed germination in Mediterranean Lamiaceae. Seed Science Research, 24(3), 257–264.Google Scholar
  12. Çatav, ŞS., Küçükakyüz, K., Tavşanoğlu, Ç, & Pausas, J. G. (2018). Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. Basic and Applied Ecology, 30, 65–75.Google Scholar
  13. Chyliński, W. K., Lukaszewska, A. J., & Kutnik, K. (2007). Drought response of two bedding plants. Acta Physiologiae Plantarum, 29(5), 399.Google Scholar
  14. Clos, L. J., Jofre, M. F., Ellinger, J. J., Westler, W. M., & Markley, J. L. (2013). NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers. Metabolomics, 9(3), 558–563.PubMedPubMedCentralGoogle Scholar
  15. Cornah, J. E., & Smith, S. M. (2002). Synthesis and function of glyoxylate cycle enzymes. In Plant peroxisomes (pp. 57–101). Dordrecht: Springer.Google Scholar
  16. Couée, I., Sulmon, C., Gouesbet, G., & El Amrani, A. (2006). Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57(3), 449–459.PubMedGoogle Scholar
  17. Dai, H., Xiao, C., Liu, H., Hao, F., & Tang, H. (2010). Combined NMR and LC–DAD–MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia miltiorrhiza Bunge. Journal of Proteome Research, 9(3), 1565–1578.PubMedGoogle Scholar
  18. Downes, K. S., Light, M. E., Pošta, M., & van Staden, J. (2015). Fire-related cues and the germination of eight Conostylis (Haemodoraceae) taxa, when freshly collected, after burial and after laboratory storage. Seed Science Research, 25(3), 286–298.Google Scholar
  19. Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M., & Graham, I. A. (2000). Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proceedings of the National Academy of Sciences, 97(10), 5669–5674.Google Scholar
  20. Eastmond, P. J., & Graham, I. A. (2001). Re-examining the role of the glyoxylate cycle in oilseeds. Trends in Plant Science, 6(2), 72–78.PubMedGoogle Scholar
  21. Emwas, A. H. M. (2015). The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabonomics (pp. 161–193). New York: Springer.Google Scholar
  22. Farag, M. A., Porzel, A., & Wessjohann, L. A. (2012). Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry, 76, 60–72.PubMedGoogle Scholar
  23. Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. In Functional genomics (pp. 155–171). Heidelberg: Springer.Google Scholar
  24. Gavaghan, C. L., Li, J. V., Hadfield, S. T., Hole, S., Nicholson, J. K., Wilson, I. D., et al. (2011). Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochemical Analysis, 22(3), 214–224.PubMedGoogle Scholar
  25. Hall, R. D. (2006). Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453–468.PubMedGoogle Scholar
  26. Jäger, A. K., Light, M. E., & Van Staden, J. (1996). Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environmental and Experimental Botany, 36(4), 421–429.Google Scholar
  27. Keeley, J. E. (1993). Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. South African Journal of Botany, 59(6), 638.Google Scholar
  28. Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., & Rundel, P. W. (2012). Fire in Mediterranean ecosystems: Ecology, evolution and management. Cambridge: Cambridge University Press.Google Scholar
  29. Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411.PubMedGoogle Scholar
  30. Kim, E. J., Kwon, J., Park, S. H., Park, C., Seo, Y.-B., Shin, H.-K., et al. (2011). Metabolite profiling of Angelica gigas from different geographical origins using 1H NMR and UPLC-MS analyses. Journal of Agricultural and Food Chemistry, 59(16), 8806–8815.PubMedGoogle Scholar
  31. Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7(3), 235–246.PubMedGoogle Scholar
  32. Kohli, P., Kalia, M., & Gupta, R. (2015). Pectin methylesterases: A review. Journal of Bioprocessing & Biotechniques, 5(5), 1.Google Scholar
  33. Komarova, T. V., Sheshukova, E. V., & Dorokhov, Y. L. (2014). Cell wall methanol as a signal in plant immunity. Frontiers in Plant Science, 5, 101.PubMedPubMedCentralGoogle Scholar
  34. Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56(410), 255–265.PubMedGoogle Scholar
  35. Kulkarni, M. G., Sparg, S. G., Light, M. E., & Van Staden, J. (2006). Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. Journal of Agronomy and Crop Science, 192(5), 395–398.Google Scholar
  36. LeClere, S., Schmelz, E. A., & Chourey, P. S. (2010). Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiology, 153(1), 306–318.PubMedPubMedCentralGoogle Scholar
  37. Light, M. E., Burger, B. V., & Van Staden, J. (2005). Formation of a seed germination promoter from carbohydrates and amino acids. Journal of Agricultural and Food Chemistry, 53(15), 5936–5942.PubMedGoogle Scholar
  38. Light, M. E., Kulkarni, M. G., Ascough, G. D., & Van Staden, J. (2007). Improved flowering of a South African Watsonia with smoke treatments. South African Journal of Botany, 73(2), 298.Google Scholar
  39. Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31(3), 245–251.Google Scholar
  40. López-Ibáñez, J., Pazos, F., & Chagoyen, M. (2016). MBROLE 2.0—functional enrichment of chemical compounds. Nucleic Acids Research, 44(W1), W201–W204.PubMedPubMedCentralGoogle Scholar
  41. Malabadi, R. B., & Nataraja, K. (2007). Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana AB Jacks. Journal of Plant Sciences, 2(1), 45–53.Google Scholar
  42. Micheli, F. (2001). Pectin methylesterases: Cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6(9), 414–419.PubMedGoogle Scholar
  43. Moreira, B., Tormo, J., Estrelles, E., & Pausas, J. G. (2010). Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany, 105(4), 627–635.PubMedPubMedCentralGoogle Scholar
  44. Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130.PubMedGoogle Scholar
  45. Nelson, D. C., Flematti, G. R., Riseborough, J. A., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2010). Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 107(15), 7095–7100.Google Scholar
  46. Odunsi, K., Wollman, R. M., Ambrosone, C. B., Hutson, A., McCann, S. E., Tammela, J., et al. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113(5), 782–788.PubMedGoogle Scholar
  47. Pan, Z., & Raftery, D. (2007). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387(2), 525–527.PubMedGoogle Scholar
  48. Papenfus, H. B., Kumari, A., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2014). Smoke-water enhances in vitro pollen germination and tube elongation of three species of Amaryllidaceae. South African Journal of Botany, 90, 87–92.Google Scholar
  49. Pelloux, J., Rusterucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6), 267–277.PubMedGoogle Scholar
  50. Pierce, S. M., Esler, K., & Cowling, R. M. (1995). Smoke-induced germination of succulents (Mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia, 102(4), 520–522.PubMedGoogle Scholar
  51. Rehman, A., ur Rehman, S., Khatoon, A., Qasim, M., Itoh, T., Iwasaki, Y., et al. (2018). Proteomic analysis of the promotive effect of plant-derived smoke on plant growth of chickpea. Journal of Proteomics, 176, 56–70.PubMedGoogle Scholar
  52. Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.PubMedGoogle Scholar
  53. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M., et al. (2009). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior, 4(5), 388–393.Google Scholar
  54. Ruan, Y. L. (2012). Signaling role of sucrose metabolism in development. Molecular Plant, 5(4), 763–765.PubMedGoogle Scholar
  55. Savorani, F., Rasmussen, M. A., Mikkelsen, M. S., & Engelsen, S. B. (2013). A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Research International, 54(1), 1131–1145.Google Scholar
  56. Senaratna, T., Dixon, K., Bunn, E., & Touchell, D. (1999). Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regulation, 28(2), 95–99.Google Scholar
  57. Singh, S., Kulkarni, M. G., & Van Staden, J. (2014). Biochemical changes associated with gibberellic acid-like activity of smoke-water, karrikinolide and vermicompost leachate during seedling development of Phaseolus vulgaris L. Seed Science Research, 24(1), 63–70.Google Scholar
  58. Singh, V., van Oosterom, E. J., Jordan, D. R., Messina, C. D., Cooper, M., & Hammer, G. L. (2010). Morphological and architectural development of root systems in sorghum and maize. Plant and Soil, 333(1–2), 287–299.Google Scholar
  59. Smeekens, S., & Rook, F. (1997). Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiology, 115(1), 7.PubMedPubMedCentralGoogle Scholar
  60. Song, J., Liu, C., Li, D., & Gu, Z. (2013). Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Industrial Crops and Products, 50, 743–749.Google Scholar
  61. Soós, V., Juhász, A., Light, M. E., Van Staden, J., & Balázs, E. (2009b). Smoke-water-induced changes of expression pattern in Grand Rapids lettuce achenes. Seed Science Research, 19(1), 37–49.Google Scholar
  62. Soós, V., Sebestyén, E., Juhász, A., Light, M. E., Kohout, L., Szalai, G., et al. (2010). Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR1. BMC Plant Biology, 10(1), 236.PubMedPubMedCentralGoogle Scholar
  63. Soós, V., Sebestyén, E., Juhász, A., Pintér, J., Light, M. E., Van Staden, J., et al. (2009a). Stress-related genes define essential steps in the response of maize seedlings to smoke-water. Functional & Integrative Genomics, 9(2), 231–242.Google Scholar
  64. Soós, V., Sebestyén, E., Posta, M., Kohout, L., Light, M. E., Staden, J., et al. (2012). Molecular aspects of the antagonistic interaction of smoke-derived butenolides on the germination process of Grand Rapids lettuce (Lactuca sativa) achenes. New Phytologist, 196(4), 1060–1073.PubMedGoogle Scholar
  65. Sparg, S. G., Kulkarni, M. G., & Van Staden, J. (2006). Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Science, 46(3), 1336–1340.Google Scholar
  66. Staden, J. V., Brown, N. A., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biology, 15(2), 167–178.Google Scholar
  67. Sturm, A., & Tang, G.-Q. (1999). The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Science, 4(10), 401–407.PubMedGoogle Scholar
  68. Van Staden, J., Sparg, S. G., Kulkarni, M. G., & Light, M. E. (2006). Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2, 3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Research, 98(2–3), 98–105.Google Scholar
  69. Wang, M., Schoettner, M., Xu, S., Paetz, C., Wilde, J., Baldwin, I. T., et al. (2017). Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling. New Phytologist, 213(4), 1755–1770.PubMedGoogle Scholar
  70. Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78(13), 4430–4442.PubMedGoogle Scholar
  71. Wishart, D. S. (2008). Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry, 27(3), 228–237.Google Scholar
  72. Wolf, S., Mouille, G., & Pelloux, J. (2009). Homogalacturonan methyl-esterification and plant development. Molecular Plant, 2(5), 851–860.PubMedGoogle Scholar
  73. Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Analytical Biochemistry, 372(2), 204–212.PubMedGoogle Scholar
  74. Xia, J., & Wishart, D. S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55, 14.10.1–14.10.91.Google Scholar
  75. Yearsley, E. M., Fowler, W. M., & He, T. (2018). Does smoke water enhance seedling fitness of serotinous species in fire-prone southwestern Western Australia? South African Journal of Botany, 115, 237–243.Google Scholar
  76. Zhang, A., Sun, H., Qiu, S., & Wang, X. (2013). NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magnetic Resonance in Chemistry, 51(9), 549–556.PubMedGoogle Scholar
  77. Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. Analyst, 137(2), 293–300.PubMedGoogle Scholar
  78. Zhi, H.-J., Qin, X.-M., Sun, H.-F., Zhang, L.-Z., Guo, X.-Q., & Li, Z.-Y. (2012). Metabolic fingerprinting of Tussilago farfara L. using 1H-NMR spectroscopy and multivariate data analysis. Phytochemical Analysis, 23(5), 492–501.PubMedGoogle Scholar
  79. Zhu, J., Mickelson, S. M., Kaeppler, S. M., & Lynch, J. P. (2006). Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 113(1), 1–10.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Şükrü Serter Çatav
    • 1
  • Emine Sonay Elgin
    • 2
  • Çağdaş Dağ
    • 2
    • 3
  • Jaime L. Stark
    • 4
  • Köksal Küçükakyüz
    • 1
    Email author
  1. 1.Division of Botany, Department of BiologyMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Division of Biochemistry, Department of ChemistryMuğla Sıtkı Koçman UniversityMuğlaTurkey
  3. 3.Department of Molecular and Cellular BiochemistryIndiana University BloomingtonBloomingtonUSA
  4. 4.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations