, 14:141 | Cite as

Diagnosis of post-surgical fine-needle aspiration biopsies of thyroid lesions with indeterminate cytology using HRMAS NMR-based metabolomics

  • Lamya Rezig
  • Adele Servadio
  • Liborio Torregrossa
  • Paolo Miccoli
  • Fulvio Basolo
  • Laetitia ShintuEmail author
  • Stefano Caldarelli
Original Article



Ultrasound examination coupled with fine-needle aspiration (FNA) cytology is the gold standard for the diagnosis of thyroid cancer. However, about 10–40% of these analyses cannot be conclusive on the malignancy of the lesions and lead to surgery. The cytological indeterminate FNA biopsies are mainly constituted of follicular—patterned lesions, which are benign in 80% of the cases.


The development of a FNAB classification approach based on the metabolic phenotype of the lesions, complementary to cytology and other molecular tests in order to limit the number of patients undergoing unnecessary thyroidectomy.


We explored the potential of a NMR-based metabolomics approach to improve the quality of the diagnosis from FNABs, using thyroid tissues collected post-surgically.


The NMR-detected metabolites were used to produce a robust OPLSDA model to discriminate between benign and malignant tumours. Malignancy was correlated with amino acids such as tyrosine, serine, alanine, leucine and phenylalanine and anti-correlated with myo-inositol, scyllo-inositol and citrate. Diagnosis accuracy was of 84.8% when only indeterminate lesions were considered.


These results on model FNAB indicate that there is a clear interest in exploring the possibility to export NMR metabolomics to pre-surgical diagnostics.


Thyroid cancer Fine-needle aspiration Indeterminate cytology Follicular NMR-based metabolomics Diagnosis 



Fine-needle aspiration


Fine-needle aspiration biopsy


Follicular adenoma


Follicular thyroid carcinoma


Papillary thyroid carcinoma


Medullary thyroid carcinoma


Tll cell variant of papillary thyroid carcinoma


Classic variant of papillary thyroid carcinoma


Follicular variant of papillary thyroid carcinoma


High-resolution magic angle spinning


Nuclear magnetic resonance


Principal component analysis


Orthogonalized projections to the latent structures discriminant analysis


Cross-validation analysis of variance




Tricarboxylic acid


Variable importance in the prediction



This study was funded by Agence nationale de la recherche (Grant No. ANR-2011- JS08-014-01).

Author Contributions

PM, FB and SC designed research. LR, AS performed research. AS and LT performed the cytological and histological analyses. LS analysed the data. LS and LT wrote the paper. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments and approved by the Local Ethics Committee of the Azienda Ospedaliero Universitaria Pisana.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11306_2018_1437_MOESM1_ESM.docx (642 kb)
Supplementary material 1 (DOCX 642 KB)


  1. Alexander, E. K., Kennedy, G. C., Baloch, Z. W., Cibas, E. S., Chudova, D., Diggans, J., et al. (2012). Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. New England Journal of Medicine, 367(8), 705–715. Scholar
  2. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C., & Thompson, C. B. (2005). ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 24(41), 6314–6322. Scholar
  3. Boroughs, L. K., & DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 17(4), 351–359. Scholar
  4. Cavanagh, J., & Rance, M. (1990). Sensitivity improvement in isotropic mixing (Tocsy) experiments. Journal of Magnetic Resonance, 88(1), 72–85. Scholar
  5. Cibas, E. S., & Ali, S. Z. (2009). The bethesda system for reporting thyroid cytopathology. Thyroid, 19(11), 1159–1165. Scholar
  6. Deja, S., Dawiskiba, T., Balcerzak, W., Orczyk-Pawilowicz, M., Glod, M., Pawelka, D., et al. (2013). Follicular adenomas exhibit a unique metabolic profile. (1)H NMR studies of thyroid lesions. PLoS ONE, 8(12), e84637. Scholar
  7. Delgado-Goni, T., Miniotis, M. F., Wantuch, S., Parkes, H. G., Marais, R., Workman, P., et al. (2016). The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF-mutant human melanoma cells. Molecular Cancer Therapeutics, 15, 2987–2999. Scholar
  8. Duggal, R., Rajwanshi, A., Gupta, N., & Vasishta, R. K. (2011). Interobserver variability amongst cytopathologists and histopathologists in the diagnosis of neoplastic follicular patterned lesions of thyroid. Diagnostic Cytopathology, 39(4), 235–241. Scholar
  9. Elsheikh, T. M., Asa, S. L., Chan, J. K., DeLellis, R. A., Heffess, C. S., LiVolsi, V. A., et al. (2008). Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. American Journal of Clinical Pathology, 130(5), 736–744. Scholar
  10. Franc, B., de la Salmoniere, P., Lange, F., Hoang, C., Louvel, A., de Roquancourt, A., et al. (2003). Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Human Pathology, 34(11), 1092–1100.CrossRefGoogle Scholar
  11. Gharib, H., Papini, E., Paschke, R., Duick, D. S., Valcavi, R., Hegedus, L., et al. (2010). American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocrine Practice, 16(Suppl 1), 1–43. Scholar
  12. Gonzalez, H. E., Martinez, J. R., Vargas-Salas, S., Solar, A., Veliz, L., Cruz, F., et al. (2017). A 10-gene classifier for indeterminate thyroid nodules: Development and multicenter accuracy Study. Thyroid, 27(8), 1058–1067. Scholar
  13. Guo, S., Qiu, L., Wang, Y., Qin, X., Liu, H., He, M., et al. (2014). Tissue imaging and serum lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 406(18), 4357–4370. Scholar
  14. Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321. Scholar
  15. Hodak, S. P., & Rosenthal, D. S., American Thyroid Association Clinical Affairs (2013). Information for clinicians: Commercially available molecular diagnosis testing in the evaluation of thyroid nodule fine-needle aspiration specimens. Thyroid, 23(2), 131–134. C.CrossRefPubMedGoogle Scholar
  16. Hotelling, H. (1931). The generalization of Student’s ratio. Annals of Mathematical Statistics, 2, 360–378.CrossRefGoogle Scholar
  17. Jozwiak, P., Ciesielski, P., Zaczek, A., Lipinska, A., Pomorski, L., Wieczorek, M., et al. (2017). Expression of hypoxia inducible factor 1alpha and 2alpha and its association with vitamin C level in thyroid lesions. Journal of Biomedical Science, 24, 83. Scholar
  18. Kakudo, K., Kameyama, K., Miyauchi, A., & Nakamura, H. (2014). Introducing the reporting system for thyroid fine-needle aspiration cytology according to the new guidelines of the Japan Thyroid Association. Endocrine Journal, 61(16), 539–552.CrossRefGoogle Scholar
  19. Labourier, E., Shifrin, A., Busseniers, A. E., Lupo, M. A., Manganelli, M. L., Andruss, B., et al. (2015). Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. The Journal of Clinical Endocrinology and Metabolism, 100(7), 2743–2750. Scholar
  20. Lloyd, R. V., Osamura, R. Y., Klöppel, G., & Rosai, J. (2017). WHO classification of tumours of endocrine organs. Lyon: IARC.Google Scholar
  21. Lu, J., Hu, S., Miccoli, P., Zeng, Q., Liu, S., Ran, L., et al. (2016). Non-invasive diagnosis of papillary thyroid microcarcinoma: A NMR-based metabolomics approach. Oncotarget, 7(49), 81768–81777. Scholar
  22. Matesa, N., Knezevic-Obad, A., Ostovic, K. T., Kardum-Skelin, I., Moslavac, S., Vasilj, A., et al. (2012). Croatian Society for Clinical Cytology guidelines for thyroid cytology. Liječnički vjesnik, 134(7–8), 203–207.PubMedGoogle Scholar
  23. Meiser, J., & Vazquez, A. (2016). Give it or take it: The flux of one-carbon in cancer cells. The FEBS Journal, 283(20), 3695–3704. Scholar
  24. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., et al. (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380–384. Scholar
  25. Miccoli, P., Torregrossa, L., Shintu, L., Magalhaes, A., Chandran, J., Tintaru, A., et al. (2012). Metabolomics approach to thyroid nodules: A high-resolution magic-angle spinning nuclear magnetic resonance-based study. Surgery, 152(6), 1118–1124 doi. Scholar
  26. Nardi, F., Basolo, F., Crescenzi, A., Fadda, G., Frasoldati, A., Orlandi, F., et al. (2014). Italian consensus for the classification and reporting of thyroid cytology. Journal of Endocrinological Investigation, 37(6), 593–599. Scholar
  27. Netea-Maier, R. T., Hunsucker, S. W., Hoevenaars, B. M., Helmke, S. M., Slootweg, P. J., Hermus, A. R., et al. (2008). Discovery and validation of protein abundance differences between follicular thyroid neoplasms. Cancer Research, 68(5), 1572–1580. Scholar
  28. Nikiforov, Y. E., Carty, S. E., Chiosea, S. I., Coyne, C., Duvvuri, U., Ferris, R. L., et al. (2015). Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid, 25(11), 1217–1223. Scholar
  29. Nordio, M., & Pajalich, R. (2013). Combined treatment with Myo-inositol and selenium ensures euthyroidism in subclinical hypothyroidism patients with autoimmune thyroiditis. J Thyroid Res. Scholar
  30. Panebianco, F., Mazzanti, C., Tomei, S., Aretini, P., Franceschi, S., Lessi, F., et al. (2015). The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer, 15(1), 918. Scholar
  31. Philippe, I., & Hubert, L. (2016). The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible therapeutic target. Drug Resistance Updates, 29, 47–53. Scholar
  32. Poma, A. M., Giannini, R., Piaggi, P., Ugolini, C., Materazzi, G., Miccoli, P., et al. (2018). A six-gene panel to label follicular adenoma, low- and high-risk follicular thyroid carcinoma. Endocrine Connections, 7(1), 124–132. Scholar
  33. Rinaldi, S., Plummer, M., Biessy, C., Tsilidis, K. K., Ostergaard, J. N., Overvad, K., et al. (2014). Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk of differentiated thyroid carcinoma: The EPIC study. Journal of the National Cancer Institute, 106(6), dju097. Scholar
  34. Ryoo, I., Kwon, H., Kim, S. C., Jung, S. C., Yeom, J. A., Shin, H. S., et al. (2016). Metabolomic analysis of percutaneous fine-needle aspiration specimens of thyroid nodules: Potential application for the preoperative diagnosis of thyroid cancer. Scientific Reports, 6, 30075. Scholar
  35. Savorani, F., Tomasi, G., & Engelsen, S. B. (2010). icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202(2), 190–202. Scholar
  36. Schleucher, J., Schwendinger, M., Sattler, M., Schmidt, P., Schedletzky, O., Glaser, S. J., et al. (1994). A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. Journal of Biomolecular NMR, 4(2), 301–306.CrossRefGoogle Scholar
  37. Tian, Y., Nie, X., Xu, S., Li, Y., Huang, T., Tang, H., et al. (2015). Integrative metabonomics as potential method for diagnosis of thyroid malignancy. Scientific Reports, 5, 14869. Scholar
  38. Torregrossa, L., Shintu, L., Chandran, J. N., Tintaru, A., Ugolini, C., Magalhaes, A., et al. (2012). Toward the reliable diagnosis of indeterminate thyroid lesions: A HRMAS NMR-based metabolomics case of study. Journal of Proteome Research, 11(6), 3317–3325 doi. Scholar
  39. Unfer, V., Facchinetti, F., Orru, B., Giordani, B., & Nestler, J. (2017). Myo-inositol effects in women with PCOS: A meta-analysis of randomized controlled trials. Endocrine Connections, 6(8), 647–658. Scholar
  40. Weber, F., Teresi, R. E., Broelsch, C. E., Frilling, A., & Eng, C. (2006). A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. The Journal of Clinical Endocrinology and Metabolism, 91(9), 3584–3591. Scholar
  41. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Research, 41(D1), D801–D807. Scholar
  42. Wojtowicz, W., Zabek, A., Deja, S., Dawiskiba, T., Pawelka, D., Glod, M., et al. (2017). Serum and urine (1)H NMR-based metabolomics in the diagnosis of selected thyroid diseases. Scientific Reports, 7(1), 9108. Scholar
  43. Xu, Y. N., Zheng, X. J., Qiu, Y. P., Jia, W., Wang, J. D., & Yin, S. K. (2015). Distinct metabolomic profiles of papillary thyroid carcinoma and benign thyroid adenoma. Journal of Proteome Research, 14(8), 3315–3321. Scholar
  44. Yao, Z., Yin, P., Su, D., Peng, Z., Zhou, L., Ma, L., et al. (2011). Serum metabolic profiling and features of papillary thyroid carcinoma and nodular goiter. Molecular Biosystems, 7(9), 2608–2614. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, iSm2MarseilleFrance
  2. 2.Division of Surgical PathologyUniversity Hospital of PisaPisaItaly
  3. 3.Department of Surgical, Medical, Molecular Pathology and Critical AreaUniversity of PisaPisaItaly

Personalised recommendations