Advertisement

Metabolomics

, 14:138 | Cite as

Metabolic diversity in tuber tissues of native Chiloé potatoes and commercial cultivars of Solanum tuberosum ssp. tuberosum L.

  • Claudio Inostroza-Blancheteau
  • Franklin Magnum de Oliveira Silva
  • Fabiola Durán
  • Jaime Solano
  • Toshihiro Obata
  • Mariana Machado
  • Alisdair R. Fernie
  • Marjorie Reyes-Díaz
  • Adriano Nunes-Nesi
Original Article
Part of the following topical collections:
  1. Plant metabolomics and lipidomics

Abstract

Introduction

The native potatoes (Solanum tuberosum ssp. tuberosum L.) cultivated on Chiloé Island in southern Chile have great variability in terms of tuber shape, size, color and flavor. These traits have been preserved throughout generations due to the geographical position of Chiloé, as well as the different uses given by local farmers.

Objectives

The present study aimed to investigate the diversity of metabolites in skin and pulp tissues of eleven native accessions of potatoes from Chile, and evaluate the metabolite associations between tuber tissues.

Methods

For a deeper characterization of these accessions, we performed a comprehensive metabolic study in skin and pulp tissues of tubers, 3 months after harvesting. Specific targeted quantification of metabolites using 96 well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography time-of-flight mass spectrometry were used in this study.

Results

We observed differential levels of antioxidant activity and phenolic compounds between skin and pulp compared to a common commercial cultivar (Desireé). In addition, we uncovered considerable metabolite variability between different tuber tissues and between native potatoes. Network correlation analysis revealed different metabolite associations among tuber tissues that indicate distinct associations between primary metabolite and anthocyanin levels, and antioxidant activity in skin and pulp tissues. Moreover, multivariate analysis lead to the grouping of native and commercial cultivars based on metabolites from both skin and pulp tissues.

Conclusions

As well as providing important information to potato producers and breeding programs on the levels of health relevant phytochemicals and other abundant metabolites such as starch, proteins and amino acids, this study highlights the associations of different metabolites in tuber skins and pulp, indicating the need for distinct strategies for metabolic engineering in these tissues. Furthermore, this study shows that native Chilean potato accessions have great potential as a natural source of phytochemicals.

Keywords

Genetic variation Native potatoes Exotic germplasms Metabolite profiling 

Notes

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [grant number CBB - AUC-00018-16]. Research fellowships were granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to ANN and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [Grant Number CBB-BPD- 00019-16] to FMOS. ANN, MRD and CIB also acknowledge the support from the Chilean Ministerio de Educación (MEC-CONICYT; Grant PAI80160036). The authors wish to thank the NUBIOMOL-UFV for providing the facilities for the analysis of this work, and Michael Handford (Universidad de Chile) for language support.

Author Contributions

CIB, MRD, and ANN conceived and designed the research. FD and CIB performed the experiments. TO, MM and FMdeOS contributed powerful analytical tools. CIB, FMdeOS and MM analyzed data. CIB and ANN wrote the manuscript. MRD, TO, JS and ARF revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Supplementary material

11306_2018_1428_MOESM1_ESM.xlsx (24 kb)
SI Table 1. Antioxidant activity, starch content, total amino acid, total anthocyanin, glucose content, fructose content, sucrose content, total phenol, total flavonoids and total protein in skin and pulp tissues of tubers from 11 native potato (Solanum tuberosum ssp. tuberosum L.) varieties and two commercial cultivars (Desireé and Yagana). Values are mean ± SE (n=5). Values in the same row followed by different letters are statistically different (P < 0.05). FW= fresh weight; DW= dry weight Supplementary material 1 (XLSX 24 KB)
11306_2018_1428_MOESM2_ESM.xlsx (62 kb)
SI Table 2. Relative abundance of primary skin metabolites of 11 native potato (Solanum tuberosum ssp. tuberosum L.) varieties and two commercial cultivars (Desireé and Yagana). Values are mean ± SE (n=5). Values in the same row followed by different letters are statistically different (P < 0.05). Abbreviations: D, Desireé; MGML, Meca de gato morada larga; MA, Michuñe azul; C, Cauchau; G, Guicoña; MN, Michuñe negro; GC, Guadacho colorado; M, Murta; CM, Clavela morada; Y, Yagana; T, Tonta; GB, Guadacho blanco; LV, Lengua de vaca. Supplementary material 2 (XLSX 61 KB)
11306_2018_1428_MOESM3_ESM.xlsx (53 kb)
SI Table 3. Relative abundance of primary pulp metabolites of 11 native potato (Solanum tuberosum ssp. tuberosum L.) varieties and two commercial cultivars (Desireé and Yagana). Values are mean ± SE (n=5). Values in the same row followed by different letters are statistically different (P < 0.05). Abbreviations: D, Desireé; MGML, Meca de gato morada larga; MA, Michuñe azul; C, Cauchau; G, Guicoña; MN, Michuñe negro; GC, Guadacho colorado; M, Murta; CM, Clavela morada; Y, Yagana; T, Tonta; GB, Guadacho blanco; LV, Lengua de vaca. Supplementary material 3 (XLSX 52 KB)

References

  1. Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: An overview. International Journal of Molecular Sciences, 17, 835.CrossRefGoogle Scholar
  2. Albishi, T., John, J., Al-Khalifa, A., & Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 5, 590–600.CrossRefGoogle Scholar
  3. Al-Weshahy, A., El-Nokety, M., Bakhete, M., & Rao, V. (2013). Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International, 50, 507–512.CrossRefGoogle Scholar
  4. Al-Weshahy, A., & Rao, A. V. (2009). Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Research International, 42, 1062–1066.CrossRefGoogle Scholar
  5. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 90, 7915–7922.CrossRefGoogle Scholar
  6. Blennow, A., Engelsen, S. B., Nielsen, T. H., Baunsgaard, L., & Mikkelsen, R. (2002). Starch phosphorylation: A new front line in starch research. Trends in Plant Science;7(10), 445–450.CrossRefGoogle Scholar
  7. Brown, C. (2005). Antioxidants in potato. American Journal of Potato Research, 82, 163–172.CrossRefGoogle Scholar
  8. Camandro, E. L., Erazzú, L. E., Maune, J. F., & Bedogni, M. C. (2012). A genetic approach to the species problem in wild potato. Plant Biology, 14, 543–554.CrossRefGoogle Scholar
  9. Carreno-Quintero, N., Acharjee, A., Maliepaard, C., Bachem, C. W., Mumm, R., Bouwmeester, H., et al. (2012). Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiology, 158, 306–1318.CrossRefGoogle Scholar
  10. Chakauya, E., Coxon, K. M., Whitney, H. M., Ashurst, J. L., Abell, C., & Smith, A. G. (2006). Pantothenate biosynthesis in higher plants: Advances and challenges. Physiologia Plantarum, 126, 319–329.CrossRefGoogle Scholar
  11. Chandrasekara, A., & Josheph Kumar, T. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science.  https://doi.org/10.1155/2016/3631647.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chinnici, F., Bendini, A., Gaiani, A., & Riponi, C. (2004). Radical scavenging activities of peels and pulps from cv. Golden delicious apples as related to their phenolic composition. Journal of Agricultural and Food Chemistry, 52, 4684–4689.CrossRefGoogle Scholar
  13. Chun, O. K., Kim, D. O., Smith, N., Schroeder, D., Han, J. T., & Lee, C. Y. (2005). Daily consumption of phenolics and total antioxidantcapacity from fruit and vegetables in the American diet. Journal ofthe Science of Food and Agriculture, 85, 1715–1724.CrossRefGoogle Scholar
  14. Contreras, A., Banse, J., Fuentealba, J., Aruta, C., & Manquian, N. (1981) Germoplasma chileno de papas (Solanum tuberosum L.). Universidad Austral de Chile, Facultad de Ciencias Agrarias, Instituto de Producción Vegetal. Informe final-1980, 33.Google Scholar
  15. Cross, J. M., von Korff, M., Altmann, T., Bartzetko, L., Sulpice, R., Gibon, Y., et al. (2006). Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology, 142, 1574–1588.CrossRefGoogle Scholar
  16. Cruz, C. D. (2013). GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum, Agronomy, 35, 271–276.CrossRefGoogle Scholar
  17. Dobson, G., Shepherd, T., Verral, S. R., Conner, S., McNicol, J. W., Ramsay, G., et al. (2008). Phytochemical diversity in tubers of potato cultivars and landraces using a GC-MS metabilomics approach. Journal of Agricultural and Food Chemistry, 56, 10280–10291.CrossRefGoogle Scholar
  18. Dobson, G., Shepherd, T., Verral, S. R., Griffiths, W. D., Ramsay, G., McNicol, J. W., et al. (2010). A metabolomics study of cultivated potato (Solanum tuberosum) group Andiggena, Phureja, Stenotomum and Tuberosum using gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 58, 1214–1213CrossRefGoogle Scholar
  19. Ezekiel, B., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato. A review. Food Research International, 50, 487–496.CrossRefGoogle Scholar
  20. Fernie, A. R., Roscher, A., Ratcliffe, G. R., & Kruger, N. J. (2001). Fructose 2,6-bishosphate activates pyrophosphate: Fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta, 212, 250–263.CrossRefGoogle Scholar
  21. Hyon, W. I., Bong-Soon, S., Seung-U, L., Nobuyuki, K., Mayumi, O. K., Carol, E. L., et al. (2008). Analysis of phenolic compounds by high performance liquid chromatography/mass spectrometry in potato flowers, leaves, stem and tubers in home-processed potatoes. Journal of Agricultural and Food Chemistry, 56, 3341–3349.CrossRefGoogle Scholar
  22. Jansen, G., & Flamme, W. (2006). Coloured potatoes (Solanum tuberosum L.) anthocyanin content and tuber quality. Genetic Resources and Crop Evolution, 53, 1321–1331.CrossRefGoogle Scholar
  23. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.CrossRefGoogle Scholar
  24. Lachman, J., Karel, H., Miloslav, Š, Matyáš, O., Vladimír, P., Alena, H., et al. (2009). Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chemistry, 114, 836–843.CrossRefGoogle Scholar
  25. Laerke, P. E., Christiansen, J., & Veierskov, B. (2002). Colour of blackspot bruises in potato tubers during growth and storage compared to their discolouration potential. Postharvest Biology and Technology, 26, 99–111.CrossRefGoogle Scholar
  26. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.CrossRefGoogle Scholar
  27. Lovat, C., Nassar, A. M., Kubow, S., Li, X. Q., & Donnelly, D. (2016). Metabolic biosynthesis of potato (Solanum tuberosum L.) antioxidants and implications for human health. Critical Reviews in Food Science and Nutrition, 56, 2278–2303.CrossRefGoogle Scholar
  28. Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiment. Bioinformatics, 24, 732–737.CrossRefGoogle Scholar
  29. Lukaszewicz, M., Matysiak-Kata, I., Skala, J., Fecka, I., Cisowski, W., & Szopa, J. (2004). Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. Journal of Agricultural and Food Chemistry, 52, 1526–1533.CrossRefGoogle Scholar
  30. Mattila, P., & Hellström, J. (2007). Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis, 20, 152–160.CrossRefGoogle Scholar
  31. Meekins, D. A., Vander Kooi, C. W., & Gentry, M. S. (2016). Structural mechanisms of plant glucan phosphatases in starch metabolism. The FEBS Journal., 283, 2427–2447.CrossRefGoogle Scholar
  32. Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Food Composition and Analysis, 51, 6887–6892.Google Scholar
  33. Nyman, N. A., & Kumpulainen, J. T. (2001). Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. Journal of Food Composition and Analysis, 49, 4183–4187.Google Scholar
  34. Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243.CrossRefGoogle Scholar
  35. Osorio, S., Do, P. T., & Fernie, A. R. (2012). Profiling primary metabolites of tomato fruit with gas chromatography/mass spectrometry. Methods in Molecular Biology, 860, 101–109.CrossRefGoogle Scholar
  36. Payyavula, R. S., Navarre, D. A., Kuhl, J. C., Pantoja, A., & Pillai, S. S. (2012). Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biology, 12, 39.CrossRefGoogle Scholar
  37. Reyes, F. L., Miller, J. C. Jr., & Cisneros-Zevallos, L. (2005). Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genopypes. American Journal of Potato Research, 82, 271–286.CrossRefGoogle Scholar
  38. Ribera, A., Reyes-Díaz, M., Alberdi, M., Zuñiga, G., & Mora, M. L. (2010). Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in Southern Chile. Journal of Soil Science and Plant Nutrition, 10, 509–536.CrossRefGoogle Scholar
  39. Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: A free, open-source system for microarray data management and analysis. BioTechniques, 34, 374.CrossRefGoogle Scholar
  40. Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45, 287–306.CrossRefGoogle Scholar
  41. Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85, 611–616.CrossRefGoogle Scholar
  42. Singh, N., & Rajini, P. S. (2008). Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chemico-Biological Interactions, 173, 97–104.CrossRefGoogle Scholar
  43. Singh, P. P., & Saldana, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 44, 35–38.Google Scholar
  44. Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 29–55.Google Scholar
  45. Solano, J., Mathias, M., Esnault, F., & Brebant, P. (2013). Genetic diversity among native varieties and commercial cultivars of Solanum tuberosum ssp tuberosum L. present in Chile. Electronic Journal of Biotechnology, 16, 6.CrossRefGoogle Scholar
  46. Sosulski, F., Krygier, K., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. Journal of Agricultural and Food Chemistry, 30, 337–340.CrossRefGoogle Scholar
  47. Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G. J. (2005). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences of the United States of America, 102, 14694–14699.CrossRefGoogle Scholar
  48. Steinfath, M., Strehmel, N., Peters, R., Schauer, N., Groth, D., Hummel, J., Steup, M., Selbig, J., Kopka, J., Geigenberger, P., & Van Dongen, J. T. (2010). Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol Journal, 8, 900–911.CrossRefGoogle Scholar
  49. Teow, C. C., Truong, V. D., McFeeters, R. F., Thompson, R. L., Pecota, K. V., & Yencho, G. C. (2007). Antioxidant activities, phenolic and b-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry, 103, 829–838.CrossRefGoogle Scholar
  50. Valcarcel, J., Reilly, K., Gaffney, M., & O’Brien, N. M. (2015). Antioxidant activity, total phenolic and total flavonoid content in sixty varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato research, 58, 221–244.CrossRefGoogle Scholar
  51. Zhang, Y., & Zhang, Y. (2007). Formation and reduction of acrylamide in maillard reaction: A review based on the current state of knowledge. Critical Reviews in Food Science and Nutrition, 47, 521–542.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Claudio Inostroza-Blancheteau
    • 1
    • 2
  • Franklin Magnum de Oliveira Silva
    • 3
  • Fabiola Durán
    • 2
  • Jaime Solano
    • 2
  • Toshihiro Obata
    • 4
  • Mariana Machado
    • 3
  • Alisdair R. Fernie
    • 4
  • Marjorie Reyes-Díaz
    • 5
    • 6
  • Adriano Nunes-Nesi
    • 3
  1. 1.Núcleo de Investigación en Producción Alimentaría (NIPA-UCT)Universidad Católica de TemucoTemucoChile
  2. 2.Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos NaturalesUniversidad Católica de TemucoTemucoChile
  3. 3.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosa-Minas GeraisBrazil
  4. 4.Central Metabolism GroupMax Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
  5. 5.Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN)Universidad de La FronteraTemucoChile
  6. 6.Departamento de Ciencias Químicas y Recursos NaturalesUniversidad de La FronteraTemucoChile

Personalised recommendations