Metabolomics

, 14:62 | Cite as

Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography–mass spectrometry

  • Daniela Rodrigues
  • Joana Pinto
  • Ana Margarida Araújo
  • Sara Monteiro-Reis
  • Carmen Jerónimo
  • Rui Henrique
  • Maria de Lourdes Bastos
  • Paula Guedes de Pinho
  • Márcia Carvalho
Original Article

Abstract

Introduction

Recent studies provide a convincing support that the presence of cancer cells in the body leads to the alteration of volatile organic compounds (VOCs) emanating from biological samples, particularly of those closely related with tumoral tissues. Thus, a great interest emerged for the study of cancer volatilome and subsequent attempts to confirm VOCs as potential diagnostic biomarkers.

Objectives

The aim of this study was to determine the volatile metabolomic signature of bladder cancer (BC) cell lines and provide an in vitro proof-of-principle that VOCs emanated into the extracellular medium may discriminate BC cells from normal bladder epithelial cells.

Methods

VOCs in the culture media of three BC cell lines (Scaber, J82, 5637) and one normal bladder cell line (SV-HUC-1) were extracted by headspace-solid phase microextraction and analysed by gas chromatography-mass spectrometry (HS-SPME/GC–MS). Two different pH (pH 2 and 7) were used for VOCs extraction to infer the best pH to be used in in vitro metabolomic studies.

Results

Multivariate analysis revealed a panel of volatile metabolites that discriminated cancerous from normal bladder cells, at both pHs, although a higher number of discriminative VOCs was obtained at neutral pH. Most of the altered metabolites were ketones and alkanes, which were generally increased in BC compared to normal cells, and alcohols, which were significantly decreased in BC cells. Among them, three metabolites, namely 2-pentadecanone, dodecanal and γ-dodecalactone (the latter only tentatively identified), stood out as particularly important metabolites and promising volatile biomarkers for BC detection. Furthermore, our results also showed the potential of VOCs in discriminating BC cell lines according to tumour grade and histological subtype.

Conclusions

We demonstrate that a GC–MS metabolomics-based approach for analysis of VOCs is a valuable strategy for identifying new and specific biomarkers that may improve BC diagnosis. Future studies should entail the validation of volatile signature found for BC cell lines in biofluids from BC patients.

Keywords

Bladder cancer In vitro Metabolomics Volatile organic compounds Volatilome Untargeted analysis HS-SPME/GC–MS 

Abbreviations

AUC

Area under the curve

BC

Bladder cancer

ES

Effect size

GC

Gas chromatography

GC-SQ

Gas chromatography-single quadrupole

HMDB

Human metabolome database

HS-SPME

Headspace solid-phase microextraction

MS

Mass spectrometry

OPLS-DA

Orthogonal partial least squares-discriminant analysis

PCA

Principal component analysis

PLS-DA

Partial least squares-discriminant analysis

QCs

Quality controls

RI

Retention index

SCC

Squamous cell carcinoma

TA

Total area

TCC

Transitional cell carcinoma

VOCs

Volatile organic compounds

VIP

Variable importance in projection

Notes

Acknowledgements

This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007728) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/MULTI/04378/2013. This study is a result of the project NORTE-01-0145-FEDER-000024, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement (DESignBIOtecHealth - New Technologies for three Health Challenges of Modern Societies: Diabetes, Drug Abuse and Kidney Diseases), through the European Regional Development Fund (ERDF). C.J.’s research is funded by a research grant from Research Center of Portuguese Oncology Institute of Porto (FB-GEBC-27) and S.M.-R. is a PhD fellow from Fundação para a Ciência e Tecnología (FCT SFRH/BD/112673/2015). M.C. acknowledges FCT through the project UID/Multi/04546/2013.

Author contributions

DR was responsible for the execution of the experimental work and data analysis. AMA supported cell culture and data analysis. JP helped with the statistical analysis of the data. SM-R, CJ and RH kindly provided the cell lines used in the study and gave conceptual advice. PGP, MLB and MC designed and supervised the study. DR wrote the manuscript with input from MC. All authors critically commented on and approved the final submitted version of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests in relation to the work described.

Research involving human and animals participants

This article does not contain any studies with human participants or animals.

Supplementary material

11306_2018_1361_MOESM1_ESM.docx (292 kb)
Supplementary material 1 (DOCX 291 KB)

References

  1. Abaffy, T., Duncan, R., Riemer, D. D., Tietje, O., Elgart, G., Milikowski, C., et al. (2010). Differential volatile signatures from skin, naevi and melanoma: A novel approach to detect a pathological process. PLoS ONE, 5(11), e13813.  https://doi.org/10.1371/journal.pone.0013813.CrossRefGoogle Scholar
  2. Aickin, M., & Gensler, H. (1996). Adjusting for multiple testing when reporting research results: The Bonferroni vs Holm methods. American Journal of Public Health, 86(5), 726–728.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altomare, D. F., Di Lena, M., Porcelli, F., Trizio, L., Travaglio, E., Tutino, M., et al. (2013). Exhaled volatile organic compounds identify patients with colorectal cancer. British Journal of Surgery, 100(1), 144–150.  https://doi.org/10.1002/bjs.8942.CrossRefGoogle Scholar
  4. Al-Zoughbi, W., Huang, J., Paramasivan, G. S., Till, H., Pichler, M., Guertl-Lackner, B., et al. (2014). Tumor macroenvironment and metabolism. Seminars in Oncology, 41(2), 281–295.  https://doi.org/10.1053/j.seminoncol.2014.02.005.CrossRefGoogle Scholar
  5. Bajtarevic, A., Ager, C., Pienz, M., Klieber, M., Schwarz, K., Ligor, M., et al. (2009). Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer, 9, 348.  https://doi.org/10.1186/1471-2407-9-348.CrossRefGoogle Scholar
  6. Bartolazzi, A., Santonico, M., Pennazza, G., Martinelli, E., Paolesse, R., D’Amico, A., et al. (2010). A sensor array and GC study about VOCs and cancer cells. Sensors and Actuators B: Chemical, 146(2), 483–488.  https://doi.org/10.1016/j.snb.2009.11.046.CrossRefGoogle Scholar
  7. Berben, L., Sereika, S. M., & Engberg, S. (2012). Effect size estimation: Methods and examples. International Journal of Nursing Studies, 49(8), 1039–1047.  https://doi.org/10.1016/j.ijnurstu.2012.01.015.CrossRefGoogle Scholar
  8. Burger, M., Catto, J. W., Dalbagni, G., Grossman, H. B., Herr, H., Karakiewicz, P., et al. (2013). Epidemiology and risk factors of urothelial bladder cancer. European Urology, 63(2), 234–241.  https://doi.org/10.1016/j.eururo.2012.07.033.CrossRefGoogle Scholar
  9. Calenic, B. (2013). Volatile organic compounds expression in different cell types: An in vitro approach. International Journal of Clinical Toxicology, 1, 43–51.Google Scholar
  10. Cauchi, M., Weber, C. M., Bolt, B. J., Spratt, P. B., Bessant, C., Turner, D. C., et al. (2016). Evaluation of gas chromatography mass spectrometry and pattern recognition for the identification of bladder cancer from urine headspace. Analytical Methods, 8(20), 4037–4046.  https://doi.org/10.1039/C6AY00400H.CrossRefGoogle Scholar
  11. Chan, E. C., Pasikanti, K. K., Hong, Y., Ho, P. C., Mahendran, R., & Raman Nee Mani, L. et al. (2015). Metabonomic profiling of bladder cancer. Journal of Proteome Research, 14(2), 587–602.  https://doi.org/10.1021/pr500966h.CrossRefGoogle Scholar
  12. Chen, X., Xu, F., Wang, Y., Pan, Y., Lu, D., Wang, P., et al. (2007). A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer, 110(4), 835–844.  https://doi.org/10.1002/cncr.22844.CrossRefGoogle Scholar
  13. Davis, V. W., Bathe, O. F., Schiller, D. E., Slupsky, C. M., & Sawyer, M. B. (2011). Metabolomics and surgical oncology: Potential role for small molecule biomarkers. Journal of Surgical Oncology, 103(5), 451–459.  https://doi.org/10.1002/jso.21831.CrossRefGoogle Scholar
  14. Di Lena, M., Porcelli, F., & Altomare, D. F. (2016). Volatile organic compounds as new biomarkers for colorectal cancer: A review. Colorectal Disease, 18(7), 654–663.  https://doi.org/10.1111/codi.13271.CrossRefGoogle Scholar
  15. Erhart, S., Amann, A., Haberlandt, E., Edlinger, G., Schmid, A., Filipiak, W., et al. (2009). 3-Heptanone as a potential new marker for valproic acid therapy. Journal of Breath Research, 3(1), 016004.  https://doi.org/10.1088/1752-7155/3/1/016004.CrossRefGoogle Scholar
  16. Ferreira, L. M. (2010). Cancer metabolism: The Warburg effect today. Experimental and Molecular Pathology, 89(3), 372–380.  https://doi.org/10.1016/j.yexmp.2010.08.006.CrossRefGoogle Scholar
  17. Filipiak, W., Filipiak, A., Sponring, A., Schmid, T., Zelger, B., Ager, C., et al. (2014). Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. Journal of Breath Research, 8(2), 027111.  https://doi.org/10.1088/1752-7155/8/2/027111.CrossRefGoogle Scholar
  18. Filipiak, W., Sponring, A., Filipiak, A., Ager, C., Schubert, J., Miekisch, W., et al. (2010). TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiology and Prevention Biomarkers, 19(1), 182–195.  https://doi.org/10.1158/1055-9965.epi-09-0162.CrossRefGoogle Scholar
  19. Fuchs, P., Loeseken, C., Schubert, J. K., & Miekisch, W. (2010). Breath gas aldehydes as biomarkers of lung cancer. International Journal of Cancer, 126(11), 2663–2670.  https://doi.org/10.1002/ijc.24970.Google Scholar
  20. Hakim, M., Broza, Y. Y., Barash, O., Peled, N., Phillips, M., Amann, A., et al. (2012). Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical Reviews, 112(11), 5949–5966.  https://doi.org/10.1021/cr300174a.CrossRefGoogle Scholar
  21. Hakimi, A. A., Reznik, E., Lee, C. H., Creighton, C. J., Brannon, A. R., Luna, A., et al. (2016). An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell, 29(1), 104–116.  https://doi.org/10.1016/j.ccell.2015.12.004.CrossRefGoogle Scholar
  22. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefGoogle Scholar
  23. Hu, Y. J., Qiu, Y. H., Chen, E. G., Ying, K. J., Yu, J., & Wang, P. (2010). Determination of volatile organic compounds in lung cancer cell lines and lung cancer tissue. Zhejiang Da Xue Xue Bao Yi Xue Ban, 39(3), 278–284.PubMedGoogle Scholar
  24. Huang, Z., Lin, L., Gao, Y., Chen, Y., Yan, X., Xing, J., et al. (2011). Bladder cancer determination via two urinary metabolites: A biomarker pattern approach. Molecular & Cellular Proteomics.  https://doi.org/10.1074/mcp.M111.007922.Google Scholar
  25. Jobu, K., Sun, C., Yoshioka, S., Yokota, J., Onogawa, M., Kawada, C., et al. (2012). Metabolomics study on the biochemical profiles of odor elements in urine of human with bladder cancer. Biological and Pharmaceutical Bulletin, 35(4), 639–642.CrossRefPubMedGoogle Scholar
  26. Khasawneh, J., Schulz, M. D., Walch, A., Rozman, J., Hrabe de Angelis, M., Klingenspor, M., et al. (2009). Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proceedings of the National Academy of Sciences USA, 106(9), 3354–3359,  https://doi.org/10.1073/pnas.0802864106.CrossRefGoogle Scholar
  27. Ku, J. H., Godoy, G., Amiel, G. E., & Lerner, S. P. (2012). Urine survivin as a diagnostic biomarker for bladder cancer: A systematic review. BJU International, 110(5), 630–636.  https://doi.org/10.1111/j.1464-410X.2011.10884.x.CrossRefGoogle Scholar
  28. Kwak, J., & Preti, G. (2011). Volatile disease biomarkers in breath: A critique. Current Pharmaceutical Biotechnology, 12(7), 1067–1074.CrossRefPubMedGoogle Scholar
  29. Lauridsen, M., Hansen, S. H., Jaroszewski, J. W., & Cornett, C. (2007). Human urine as test material in 1H NMR-based metabonomics: Recommendations for sample preparation and storage. Analytical Chemistry, 79(3), 1181–1186.  https://doi.org/10.1021/ac061354x.CrossRefGoogle Scholar
  30. Leon, Z., Garcia-Canaveras, J. C., Donato, M. T., & Lahoz, A. (2013). Mammalian cell metabolomics: Experimental design and sample preparation. Electrophoresis, 34(19), 2762–2775.  https://doi.org/10.1002/elps.201200605.Google Scholar
  31. Ligor, M., Ligor, T., Bajtarevic, A., Ager, C., Pienz, M., Klieber, M., et al. (2009). Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clinical Chemistry and Laboratory Medicine, 47(5), 550–560.  https://doi.org/10.1515/cclm.2009.133.CrossRefGoogle Scholar
  32. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer and Prostatic Diseases, 9(3), 230–234.  https://doi.org/10.1038/sj.pcan.4500879.CrossRefGoogle Scholar
  33. McCulloch, M., Jezierski, T., Broffman, M., Hubbard, A., Turner, K., & Janecki, T. (2006). Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integrative Cancer Therapies, 5(1), 30–39.  https://doi.org/10.1177/1534735405285096.CrossRefGoogle Scholar
  34. Miremami, J., & Kyprianou, N. (2014). The promise of novel molecular markers in bladder cancer. International Journal of Molecular Sciences, 15(12), 23897–23908.  https://doi.org/10.3390/ijms151223897.CrossRefGoogle Scholar
  35. Mochalski, P., Sponring, A., King, J., Unterkofler, K., Troppmair, J., & Amann, A. (2013). Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro. Cancer Cell International, 13(1), 72.  https://doi.org/10.1186/1475-2867-13-72.CrossRefGoogle Scholar
  36. Monteiro, M., Carvalho, M., Henrique, R., Jeronimo, C., Moreira, N., de Lourdes Bastos, M., et al. (2014). Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography-mass spectrometry for biomarker discovery: Application in a pilot study to discriminate patients with renal cell carcinoma. European Journal of Cancer, 50(11), 1993–2002.  https://doi.org/10.1016/j.ejca.2014.04.011.CrossRefGoogle Scholar
  37. Nunes de Paiva, M. J., Menezes, H. C., & de Lourdes Cardeal, Z. (2014). Sampling and analysis of metabolomes in biological fluids. Analyst, 139(15), 3683–3694.  https://doi.org/10.1039/c4an00583j.CrossRefGoogle Scholar
  38. Pasikanti, K. K., Esuvaranathan, K., Ho, P. C., Mahendran, R., Kamaraj, R., Wu, Q. H., et al. (2010a). Noninvasive urinary metabonomic diagnosis of human bladder cancer. Journal of Proteome Research, 9(6), 2988–2995.  https://doi.org/10.1021/pr901173v.CrossRefGoogle Scholar
  39. Pasikanti, K. K., Esuvaranathan, K., Hong, Y., Ho, P. C., Mahendran, R., Raman Nee Mani, L., et al (2013). Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Proteome Research, 12(9), 3865–3873.  https://doi.org/10.1021/pr4000448.CrossRefGoogle Scholar
  40. Pasikanti, K. K., Norasmara, J., Cai, S., Mahendran, R., Esuvaranathan, K., Ho, P. C., et al. (2010b). Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using two-dimensional gas chromatography time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 398(3), 1285–1293.  https://doi.org/10.1007/s00216-010-4055-3.CrossRefGoogle Scholar
  41. Peng, G., Hakim, M., Broza, Y. Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., et al. (2010). Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. British Journal of Cancer, 103(4), 542–551.  https://doi.org/10.1038/sj.bjc.6605810.CrossRefGoogle Scholar
  42. Phillips, M., Cataneo, R. N., Greenberg, J., Gunawardena, R., Naidu, A., & Rahbari-Oskoui, F. (2000). Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. The Journal of Laboratory and Clinical Medicine, 136(3), 243–249.  https://doi.org/10.1067/mlc.2000.108943.CrossRefGoogle Scholar
  43. Pickel, D., Manucy, G. P., Walker, D. B., Hall, S. B., & Walker, J. C. (2004). Evidence for canine olfactory detection of melanoma. Applied Animal Behaviour Science, 89(1), 107–116.  https://doi.org/10.1016/j.applanim.2004.04.008.CrossRefGoogle Scholar
  44. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.  https://doi.org/10.1186/1471-2105-11-395.CrossRefGoogle Scholar
  45. Poli, D., Goldoni, M., Corradi, M., Acampa, O., Carbognani, P., Internullo, E., et al. (2010). Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. Journal of Chromatography B, 878(27), 2643–2651.  https://doi.org/10.1016/j.jchromb.2010.01.022.CrossRefGoogle Scholar
  46. Putluri, N., Shojaie, A., Vasu, V. T., Vareed, S. K., Nalluri, S., Putluri, V., et al. (2011). Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Research, 71(24), 7376–7386.  https://doi.org/10.1158/0008-5472.can-11-1154.CrossRefGoogle Scholar
  47. Rodrigues, D., Jeronimo, C., Henrique, R., Belo, L., de Lourdes Bastos, M., de Pinho, P. G., et al. (2016a). Biomarkers in bladder cancer: A metabolomic approach using in vitro and ex vivo model systems. International Journal of Cancer, 139(2), 256–268.  https://doi.org/10.1002/ijc.30016.CrossRefGoogle Scholar
  48. Rodrigues, D., Monteiro, M., Jeronimo, C., Henrique, R., Belo, L., Bastos, M. L., et al. (2016b). Renal cell carcinoma: A critical analysis of metabolomic biomarkers emerging from current model systems. Translational Research.  https://doi.org/10.1016/j.trsl.2016.07.018.Google Scholar
  49. Rudnicka, J., Kowalkowski, T., Ligor, T., & Buszewski, B. (2011). Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. Journal of Chromatography B, 879(30), 3360–3366.  https://doi.org/10.1016/j.jchromb.2011.09.001.CrossRefGoogle Scholar
  50. Schmidt, K., & Podmore, I. (2015). Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. Journal of Biomarkers.  https://doi.org/10.1155/2015/981458.Google Scholar
  51. Shirasu, M., & Touhara, K. (2011). The scent of disease: Volatile organic compounds of the human body related to disease and disorder. The Journal of Biochemistry, 150(3), 257–266.  https://doi.org/10.1093/jb/mvr090.CrossRefGoogle Scholar
  52. Silva, C. L., Passos, M., & Camara, J. S. (2011). Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. British Journal of Cancer, 105(12), 1894–1904.  https://doi.org/10.1038/bjc.2011.437.CrossRefGoogle Scholar
  53. Sponring, A., Filipiak, W., Mikoviny, T., Ager, C., Schubert, J., Miekisch, W., et al. (2009). Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Research, 29(1), 419–426.PubMedGoogle Scholar
  54. Wang, C., Ke, C., Wang, X., Chi, C., Guo, L., Luo, S., et al. (2014). Noninvasive detection of colorectal cancer by analysis of exhaled breath. Analytical and Bioanalytical Chemistry, 406(19), 4757–4763.  https://doi.org/10.1007/s00216-014-7865-x.CrossRefGoogle Scholar
  55. Willis, C. M., Church, S. M., Guest, C. M., Cook, W. A., McCarthy, N., Bransbury, A., et al. (2004). Olfactory detection of human bladder cancer by dogs: Proof of principle study. BMJ, 329, 712.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The Human Metabolome Database. Nucleic Acids Research, 35(Database issue), D521–D526.  https://doi.org/10.1093/nar/gkl923.CrossRefGoogle Scholar
  57. Worley, B., & Powers, R. (2013). Multivariate analysis in metabolomics. Current Metabolomics, 1(1), 92–107.  https://doi.org/10.2174/2213235x11301010092.Google Scholar
  58. Zhang, Z., & Pawliszyn, J. (1993). Headspace solid-phase microextraction. Analytical Chemistry, 65(14), 1843–1852.  https://doi.org/10.1021/ac00062a008.CrossRefGoogle Scholar
  59. Zimmermann, D., Hartmann, M., Moyer, M. P., Nolte, J., & Baumbach, J. I. (2007). Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics, 3(1), 13–17.  https://doi.org/10.1007/s11306-006-0038-y.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
  2. 2.Cancer Biology & Epigenetics Group, Research Center (CI-IPOP)Portuguese Oncology Institute of Porto (IPO Porto)PortoPortugal
  3. 3.Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS)University of PortoPortoPortugal
  4. 4.Department of PathologyPortuguese Oncology Institute of Porto (IPO Porto)PortoPortugal
  5. 5.UFP Energy, Environment and Health Research Unit (FP-ENAS)University Fernando PessoaPortoPortugal

Personalised recommendations