Metabonomic investigation of rat tissues following intravenous administration of cyanidin 3-glucoside at a physiologically relevant dose
- 553 Downloads
- 12 Citations
Abstract
Anthocyanins, which are dietary flavonoids occurring in fruit and beverages, are reported to have a beneficial impact on a wide range of chronic diseases, such as cardiovascular, neurodegenerative and neoplastic diseases. To understand the underlying mechanisms, a biochemical description of the changes in cell metabolism caused by anthocyanins can be provided by metabonomic studies. The aim of this study was to detect changes in the profiles of metabolites induced by the administration of cyanidin 3-glucoside to adult male rats. A physiological dose of cyanidin 3-glucoside was intravenously administered, and blood, kidneys and liver were collected after 5 min. The tissues were rapidly frozen in liquid nitrogen, stored briefly at −80 °C, homogenised under cryogenic conditions and extracted in ice-cold methanol:water (95:5, v/v). The extracts were then analysed using UPLC/QTOF-MS. Multivariate statistical analysis of the data was performed using orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Discriminating variables were compared to the in-house standard database, considering matches in retention times, parent mass ions, mass fragment patterns and isotopic patterns. This metabolomic approach made it possible to identify as many as eight metabolite markers, including bile acids, reduced and oxidised glutathione and some lipids. Such changes suggest that cyanidin 3-glucoside has a major effect on tissue antioxidant status as well as on energy and glucose metabolism.
Keywords
Anthocyanins Cyanidin 3-glucoside Metabolomics Metabonomics Wistar rats Ultra performance liquid chromatography Quadrupole-time-of-flight mass spectrometryNotes
Acknowledgments
The authors gratefully thank Domenico Masuero for his expert assistance in MS analysis. The study was carried out with support of: the Slovenian Research Agency (project: Z4-2280), the ADP2010 MetaQuality projects, funded by the Autonomous Province of Trento, Italy and the “Integrated and Sustainable Vine-Wine Management (GISVI)” project (L.R. 26/2010 – Support for the production and exploitation of knowledge) funded by the Autonomous Region of Friuli Venezia Giulia.
Supplementary material
References
- Adhikari, D. P., Francis, J. A., Schutzki, R. E., Chandra, A., & Nair, M. G. (2005). Quantification and characterisation of cyclo-oxygenase and lipid peroxidation inhibitory anthocyanins in fruits of Amelanchier. Phytochemical Analysis, 16(3), 175–180.PubMedCrossRefGoogle Scholar
- Ali, K., Iqbal, M., Korthout, H., Maltese, F., Fortes, A., Pais, M., et al. (2012). NMR spectroscopy and chemometrics as a tool for anti-TNFα activity screening in crude extracts of grapes and other berries. Metabolomics. doi: 10.1007/s11306-012-0406-8.
- Attilio, R. (2007). Absorption, transport, and tissue delivery of vitamin E. Molecular Aspects of Medicine, 28(5–6), 423–436.Google Scholar
- Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390(3), 191–214.PubMedCrossRefGoogle Scholar
- Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68(3), 168–177.PubMedCrossRefGoogle Scholar
- Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20(8–10), 341–351.CrossRefGoogle Scholar
- Cassidy, A., O’Reilly, É. J., Kay, C., Sampson, L., Franz, M., Forman, J. P., et al. (2011). Habitual intake of flavonoid subclasses and incident hypertension in adults. The American Journal of Clinical Nutrition, 93(2), 338–347.PubMedCrossRefGoogle Scholar
- Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., & Rodrick, G. E. (2009). Metabolomic analysis in food science: a review. Trends in Food Science & Technology, 20(11–12), 557–566.CrossRefGoogle Scholar
- Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112.CrossRefGoogle Scholar
- Coen, M., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology, 21(1), 9–27.PubMedCrossRefGoogle Scholar
- Cole, S. P. C., & Deeley, R. G. (2006). Transport of glutathione and glutathione conjugates by MRP1. Trends in Pharmacological Sciences, 27(8), 438–446.PubMedCrossRefGoogle Scholar
- Dawson, P. A., Hubbert, M. L., & Rao, A. (2010). Getting the mOST from OST: Role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochimica et Biophysica Acta, 1801(9), 994–1004.PubMedCrossRefGoogle Scholar
- De Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.PubMedCrossRefGoogle Scholar
- Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78.PubMedCrossRefGoogle Scholar
- Ennulat, D., Magid-Slav, M., Rehm, S., & Tatsuoka, K. S. (2010). Diagnostic performance of traditional hepatobiliary biomarkers of drug-induced liver injury in the rat. Toxicological Sciences, 116(2), 397–412.PubMedCrossRefGoogle Scholar
- Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2(3), 155–168.PubMedCrossRefGoogle Scholar
- Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1), 155–171.PubMedCrossRefGoogle Scholar
- Gika, H., & Theodoridis, G. (2011). Sample preparation prior to the LC-MS-based metabolomics/metabonomics of blood-derived samples. Bioanalysis, 3(14), 1647–1661.PubMedCrossRefGoogle Scholar
- Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., et al. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4), 1365–1402.PubMedCrossRefGoogle Scholar
- Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B., & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet, 342(8878), 1007–1011.PubMedCrossRefGoogle Scholar
- Ichiyanagi, T. (2008). Bioavailability and metabolic fate of anthocyanins. Functional food and health. ACS Symposium Series, 993, 48–61.CrossRefGoogle Scholar
- Jackson, J. E. (1991). User’s guide to principal components. New York: Wiley.Google Scholar
- Kay, C. D. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19(01), 137–146.PubMedCrossRefGoogle Scholar
- Kind, T., & Fiehn, O. (2009). What are the obstacles for an integrated system for comprehensive interpretation of cross-platform metabolic profile data? Bioanalysis, 1(9), 1511–1514.PubMedCrossRefGoogle Scholar
- Klaassen, C. D., & Aleksunes, L. M. (2010). Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacological Reviews, 62(1), 1–96.PubMedCrossRefGoogle Scholar
- Kostrubsky, V. E., Strom, S. C., Hanson, J., Urda, E., Rose, K., Burliegh, J., et al. (2003). Evaluation of hepatotoxic potential of drugs by inhibition of bile-acid transport in cultured primary human hepatocytes and intact rats. Toxicological Sciences, 76(1), 220–228.PubMedCrossRefGoogle Scholar
- Koulman, A., Lane, G., Harrison, S., & Volmer, D. (2009). From differentiating metabolites to biomarkers. Analytical and Bioanalytical Chemistry, 394(3), 663–670.PubMedCrossRefGoogle Scholar
- Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89(1), 147–191.PubMedCrossRefGoogle Scholar
- Lichtenstein, A. H., Appel, L. J., Brands, M., Carnethon, M., Daniels, S., Franch, H. A., et al. (2006). Diet and lifestyle recommendations revision 2006. Circulation, 114(1), 82–96.PubMedCrossRefGoogle Scholar
- Manach, C., & Donovan, J. L. (2004). Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radical Research, 38(8), 771–785.PubMedCrossRefGoogle Scholar
- Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. American Journal of Clinical Nutrition, 81(1), 230S–242S.PubMedGoogle Scholar
- Masson, P., Alves, A. C., Ebbels, T. M. D., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82(18), 7779–7786.PubMedCrossRefGoogle Scholar
- McGhie, T. K., & Walton, M. C. (2007). The bioavailability and absorption of anthocyanins: Towards a better understanding. Molecular Nutrition & Food Research, 51(6), 702–713.CrossRefGoogle Scholar
- Minami, Y., Kasukawa, T., Kakazu, Y., Iigo, M., Sugimoto, M., Ikeda, S., et al. (2009). Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences, 106(24), 9890–9895.CrossRefGoogle Scholar
- Moazzami, A. A., Andersson, R., & Kamal-Eldin, A. (2011). Changes in the metabolic profile of rat liver after α-tocopherol deficiency as revealed by metabolomics analysis. NMR in Biomedicine, 24(5), 499–505.PubMedCrossRefGoogle Scholar
- Moco, S., Vervoort, J., Moco, S., Bino, R. J., De Vos, R. C. H., & Bino, R. (2007). Metabolomics technologies and metabolite identification. TrAC Trends in Analytical Chemistry, 26(9), 855–866.CrossRefGoogle Scholar
- Mursu, J., Nurmi, T., Tuomainen, T.-P., Salonen, J. T., Pukkala, E., & Voutilainen, S. (2008). Intake of flavonoids and risk of cancer in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. International Journal of Cancer, 123(3), 660–663.CrossRefGoogle Scholar
- Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.PubMedCrossRefGoogle Scholar
- Prior, R. L. (2003). Fruits and vegetables in the prevention of cellular oxidative damage. American Journal of Clinical Nutrition, 78(3 Suppl.), 570S–578S.PubMedGoogle Scholar
- Purucker, E., Marschall, H.-U., Geier, A., Gartung, C., & Matern, S. (2002). Increase in renal glutathione in cholestatic liver disease is due to a direct effect of bile acids. American Journal of Physiology, 283(6), F1281–F1289.PubMedGoogle Scholar
- Qiu, Y., Cai, G., Su, M., Chen, T., Liu, Y., Xu, Y., et al. (2010). Urinary metabonomic study on colorectal cancer. Journal of Proteome Research, 9(3), 1627–1634.PubMedCrossRefGoogle Scholar
- Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85(2), 809–822.PubMedCrossRefGoogle Scholar
- Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 1–10. doi: 10.1007/s11306-011-0293-4.
- Roux, A., Lison, D., Junot, C., & Heilier, J.-F. (2011). Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clinical Biochemistry, 44(1), 119–135.PubMedCrossRefGoogle Scholar
- Sana, T. R., Waddell, K., & Fischer, S. M. (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. Journal of Chromatography B, 871(2), 314–321.CrossRefGoogle Scholar
- Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B., van Ommen, B., et al. (2009). Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5(4), 435–458.PubMedCrossRefGoogle Scholar
- Shin, M. H., Lee, D. Y., Liu, K.-H., Fiehn, O., & Kim, K. H. (2010). Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Analytical Chemistry, 82(15), 6660–6666.PubMedCrossRefGoogle Scholar
- Spormann, T. M., Albert, F. W., Rath, T., Dietrich, H., Will, F., Stockis, J.-P., et al. (2008). Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiology, Biomarkers and Prevention, 17(12), 3372–3380.PubMedCrossRefGoogle Scholar
- Stella, C., Beckwith-Hall, B., Cloarec, O., Holmes, E., Lindon, J. C., Powell, J., et al. (2006). Susceptibility of human metabolic phenotypes to dietary modulation. Journal of Proteome Research, 5(10), 2780–2788.PubMedCrossRefGoogle Scholar
- St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B., & Meier, P. J. (2001). Transport of bile acids in hepatic and non-hepatic tissues. Journal of Experimental Biology, 204(10), 1673–1686.PubMedGoogle Scholar
- Theodoridis, G., Gika, H., Franceschi, P., Caputi, L., Arapitsas, P., Scholz, M., et al. (2012). LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics, 8(2), 175–185.CrossRefGoogle Scholar
- Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479.PubMedCrossRefGoogle Scholar
- Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.CrossRefGoogle Scholar
- U.S. Department of Agriculture, A. R. S. (2007). USDA Database for the flavonoid content of selected Foods, Release 2.1. Accessed May 4, 2011, from http://www.nal.usda.gov/fnic/foodcomp/Data/Flav/Flav02-1.pdf.
- U.S. Department of Health & Human services, & U.S. Department of Agriculture (2010). Dietary Guidelines for Americans, 2010. Accessed Oct 3, 2011 from http://health.gov/dietaryguidelines/dga2010/DietaryGuidelines2010.pdf.
- Vanzo, A., Vrhovsek, U., Tramer, F., Mattivi, F., & Passamonti, S. (2011). Exceptionally fast uptake and metabolism of cyanidin 3-glucoside by rat kidneys and liver. Journal of Natural Products, 74(5), 1049–1054.PubMedCrossRefGoogle Scholar
- Villas-Bôas, S. G. (2006). Sampling and sample preparation. In S. G. Villas-Bôas, U. Roessner, M. A. E. Hansen, J. Smedsgaard, & J. Nielsen (Eds.), Metabolome analysis: An introduction (pp. 39–82). New Yersey: Wiley.Google Scholar
- WHO (2004). Global strategy on diet, physical activity and health. Accessed September 2, 2011, from http://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf.
- Wiklund, S., Johansson, E., Sjostrom, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.PubMedCrossRefGoogle Scholar
- Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37(suppl 1), D603–D610.PubMedCrossRefGoogle Scholar
- Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35(suppl 1), D521–D526.PubMedCrossRefGoogle Scholar
- Wold, H. (1985). Partial least squares. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of statistical sciences (vol. 6, pp. 581–591). New York: Willey.Google Scholar
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.CrossRefGoogle Scholar
- Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075.PubMedCrossRefGoogle Scholar
- Yang, H., Pang, W., Lu, H., Cheng, D., Yan, X., Cheng, Y., et al. (2011). Comparison of metabolic profiling of cyanidin-3-O-galactoside and extracts from blueberry in aged mice. Journal of Agricultural and Food Chemistry, 59(5), 2069–2076.PubMedCrossRefGoogle Scholar
- Yin, P., Zhao, X., Li, Q., Wang, J., Li, J., & Xu, G. (2006). Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). Journal of Proteome Research, 5(9), 2135–2143.PubMedCrossRefGoogle Scholar
- Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81(4), 1357–1364.PubMedCrossRefGoogle Scholar