Role of purines in regulation of metabolic reprogramming

  • Zhenwei Tang
  • Wenrui Ye
  • Haotian Chen
  • Xinwei Kuang
  • Jia Guo
  • Minmin Xiang
  • Cong Peng
  • Xiang ChenEmail author
  • Hong LiuEmail author
Review Article


Purines, among most influential molecules, are reported to have essential biological function by regulating various cell types. A large number of studies have led to the discovery of many biological functions of the purine nucleotides such as ATP, ADP, and adenosine, as signaling molecules that engage G protein-coupled or ligand-gated ion channel receptors. The role of purines in the regulation of cellular functions at the gene or protein level has been well documented. With the advances in multiomics, including those from metabolomic and bioinformatic analyses, metabolic reprogramming was identified as a key mechanism involved in the regulation of cellular function under physiological or pathological conditions. Recent studies suggest that purines or purine-derived products contribute to important regulatory functions in many fundamental biological and pathological processes related to metabolic reprogramming. Therefore, this review summarizes the role and potential mechanism of purines in the regulation of metabolic reprogramming. In particular, the molecular mechanisms of extracellular purine- and intracellular purine-mediated metabolic regulation in various cells during disease development are discussed. In summary, our review provides an extensive resource for studying the regulatory role of purines in metabolic reprogramming and sheds light on the utilization of the corresponding peptides or proteins for disease diagnosis and therapy.


Purines Metabolic reprogramming Target therapy Signal transduction 


Funding information

This work was financially supported by the grants from the Health and Family Planning Commission of Hunan Province (B20180855), Innovation Driven Planning of Central South University(2018CX028), and High-level Talent Planning of Xiangya Hospital.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ramaiah A (1974) Pasteur effect and phosphofructokinase. Curr Top Cell Regul 8:297–345CrossRefPubMedGoogle Scholar
  4. 4.
    Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34(1):1–10CrossRefGoogle Scholar
  5. 5.
    Krebs HA (1972) The Pasteur effect and the relations between respiration and fermentation. Essays Biochem 8(1):1PubMedGoogle Scholar
  6. 6.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21(3):297–308CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Libby CJ (2018) The Pro-tumorigenic Effects of Metabolic Alterations in Glioblastoma Including Brain Tumor Initiating Cells. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1869(2):175–188Google Scholar
  8. 8.
    Herranz D et al (2015) Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia. Nat Med 21(10):1182CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rozovski U et al (2016) Metabolism pathways in chronic lymphocytic leukemia. Leuk Lymphoma 57(4):758–765CrossRefPubMedGoogle Scholar
  10. 10.
    Boroughs LK, Deberardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Aguilar E et al (2016) Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program. Stem Cells 34(5):1163CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wettersten HI, Hakimi AA, Morin D, Bianchi C, Johnstone ME, Donohoe DR, Trott JF, Aboud OA, Stirdivant S, Neri B, Wolfert R, Stewart B, Perego R, Hsieh JJ, Weiss RH (2015) Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res 75(12):2541–2552CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chang HJ et al (2009) GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer 9(1):241CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dong J, Xiao D, Zhao Z, Ren P, Li C, Hu Y, Shi J, Su H, Wang L, Liu H, Li B, Gao P, Qing G (2017) Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism. Oncogenesis 6(7):e356CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Deberardinis RJ et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20CrossRefPubMedGoogle Scholar
  16. 16.
    Søreide K, Sund M (2015) Epidemiological-molecular evidence of metabolic reprogramming on proliferation, autophagy and cell signaling in pancreas cancer. Cancer Lett 356(2):281–288CrossRefPubMedGoogle Scholar
  17. 17.
    Sinclair LV et al (2013) Corrigendum: control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500–508CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zeng H (2013) T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity 39(6):1043–1056CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ryall JG, Cliff T, Dalton S, Sartorelli V (2015) Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17(6):651–662CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eng CH, Abraham RT (2011) The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 30(47):4687–4696CrossRefPubMedGoogle Scholar
  21. 21.
    Subhra NBSP, Biswas K (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43(3):435CrossRefGoogle Scholar
  22. 22.
    Kelly B, O'Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25(7):771–784CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Torigoe M, Iwata S (2017) Metabolic Reprogramming Commits Differentiation of Human CD27(+)IgD(+) B Cells to Plasmablasts or CD27(-)IgD(-) Cells. J Immunol 199(2):425–434Google Scholar
  24. 24.
    Deng J et al (2016) Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol 198(1):170CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Al-Khami AA, Rodriguez PC (2016) Metabolic Reprogramming of Myeloid-derived Suppressor Cells (MDSC) in Cancer. OncoImmunology 5(8):e1200771Google Scholar
  26. 26.
    Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, Gardiner CM (2016) Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J Immunol 196(6):2552–2560CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu YC, Chen CT, Wei YH (2016) Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling. Biochim Biophys Acta 1860(4):686–693CrossRefPubMedGoogle Scholar
  28. 28.
    Chen C, Tang Q, Zhang Y, Dai M, Jiang Y, Wang H, Yu M, Jing W, Tian W (2017) Metabolic reprogramming by HIF-1 activation enhances survivability of human adipose-derived stem cells in ischaemic microenvironments. Cell Prolif 50(5):e12363CrossRefGoogle Scholar
  29. 29.
    Oburoglu et al (2014) Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 15(2):169–184CrossRefPubMedGoogle Scholar
  30. 30.
    Liu H, Zhang Y, Wu H, D’Alessandro A, Yegutkin GG, Song A, Sun K, Li J, Cheng NY, Huang A, Edward Wen Y, Weng TT, Luo F, Nemkov T, Sun H, Kellems RE, Karmouty-Quintana H, Hansen KC, Zhao B, Subudhi AW, Jameson-van Houten S, Julian CG, Lovering AT, Eltzschig HK, Blackburn MR, Roach RC, Xia Y (2016) Beneficial role of erythrocyte adenosine A2B receptor-mediated AMP-activated protein kinase activation in high-altitude hypoxia. Circulation 134(5):405–421CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kjaergaard J et al (2018) A 2A adenosine receptor gene deletion or synthetic A 2A antagonist liberate tumor-reactive CD8 + T cells from tumor-induced immunosuppression. J Immunol 201(2):782–791CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Carey BW et al (2014) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16(2):171–183CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shyhchang N et al (2013) Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155(4):778–792CrossRefGoogle Scholar
  35. 35.
    Michelet X (2018) Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 19(12):1330–1340Google Scholar
  36. 36.
    Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, Huang SCC, van der Windt GJW, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, Warmoes MO, de Cubas AA, MacIver NJ, Locasale JW, Turka LA, Wells AD, Rathmell JC (2016) Foxp3 and toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol 17(12):1459–1466CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sica A, Strauss L (2017) Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology. J Leukoc Biol 102(2):325–334CrossRefPubMedGoogle Scholar
  39. 39.
    Bettencourt IA, Powell JD (2017) Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. J Immunol 198(3):999CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Binger KJ, Côrtereal BF (2017) Immunometabolic Regulation of Interleukin-17-Producing T Helper Cells: Uncoupling New Targets for Autoimmunity. Front Immunol 8:311Google Scholar
  41. 41.
    Huang L, Xu H, Peng G (2018) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 15:428–437CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123(9):3685–3692CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, Li L, Boussiotis VA (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Noman MZ et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sun K et al (2016) Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nat Commun 7:12086CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(24):509–581PubMedGoogle Scholar
  47. 47.
    Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49(1):877–919CrossRefPubMedGoogle Scholar
  48. 48.
    Liu H, Xia Y (2015) Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol (1985) 119(10):1173CrossRefGoogle Scholar
  49. 49.
    Mcdonough KA, Rodriguez A (2012) The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 10(1):27–38CrossRefGoogle Scholar
  50. 50.
    Ferrari D et al (2016) Purinergic signaling during immune cell trafficking. Trends Immunol 37(6):399–411CrossRefPubMedGoogle Scholar
  51. 51.
    Antonioli L et al (2008) Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 120(3):233–253CrossRefPubMedGoogle Scholar
  52. 52.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738CrossRefGoogle Scholar
  53. 53.
    Adinolfi E et al (2017) The P2X7 receptor: a main player in inflammation. Biochem Pharmacol 151:S0006295217307335Google Scholar
  54. 54.
    Eltzschig HK (2013) Extracellular adenosine signaling in molecular medicine. J Mol Med (Berl) 91(2):141–146CrossRefGoogle Scholar
  55. 55.
    Geldenhuys WJ et al (2017) Exploring adenosine receptor ligands: potential role in the treatment of cardiovascular diseases. Molecules 22(6):917CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Haskó G, Csóka B, Németh ZH, Vizi ES, Pacher P (2009) A2B adenosine receptors in immunity and inflammation. Trends Immunol 30(6):263–270CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475CrossRefGoogle Scholar
  58. 58.
    Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56(1):208–215CrossRefPubMedGoogle Scholar
  59. 59.
    Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16(3):177–192CrossRefPubMedGoogle Scholar
  61. 61.
    Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M (2017) Purinergic P2Y receptors: molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 180:113–128CrossRefPubMedGoogle Scholar
  62. 62.
    Welihinda AA et al (2017) Enhancement of inosine-mediated A 2A R signaling through positive allosteric modulation. Cell Signal 42:227–235CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yarom M et al (1998) Identification of inosine as an endogenous modulator for the benzodiazepine binding site of the GABAA receptors. J Biomed Sci 5(4):274–280CrossRefPubMedGoogle Scholar
  64. 64.
    Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89(3):1025–1078CrossRefPubMedGoogle Scholar
  65. 65.
    Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kahn BB et al (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25CrossRefGoogle Scholar
  67. 67.
    Ricciarelli R, Fedele E (2018) cAMP, cGMP and amyloid β: three ideal partners for memory formation. Trends Neurosci 41:255–266CrossRefPubMedGoogle Scholar
  68. 68.
    Rasmussen H, Kelley G, Douglas JS (1990) Interactions between Ca2+ and cAMP messenger system in regulation of airway smooth muscle contraction. Am J Phys 258(6 Pt 1):L279Google Scholar
  69. 69.
    Kresge N, Simoni RD, Hill RL (2005) Earl W. Sutherland’s discovery of cyclic adenine monophosphate and the second messenger system. J Biol Chem 19(280):e39Google Scholar
  70. 70.
    Skalhegg BS, Tasken K (2000) Specificity in the cAMP/PKA signaling pathway. differential expression, regulation, and subcellular localization of subunits of PKA. Front Biosci 5(1):D678CrossRefGoogle Scholar
  71. 71.
    Buglioni A, Burnett JC (2016) New Pharmacological Strategies to Increase cGMP. Annu Rev Med 67:229–243Google Scholar
  72. 72.
    Fan F et al (2016) Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide. Sci Rep 6:22637CrossRefGoogle Scholar
  73. 73.
    Ruizgarcía A et al (2011) Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 286(22):19247–19258CrossRefGoogle Scholar
  74. 74.
    Hatfield SM, Sitkovsky M (2016) A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol 29:90–96CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Akio O et al (2012) The development and immunosuppressive functions of CD4+CD25+FoxP3+regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3(3):190–190Google Scholar
  76. 76.
    Hatfield SM et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(277):277ra30CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gnad T et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516(7531):395–399CrossRefPubMedGoogle Scholar
  78. 78.
    Ohta A (2016) A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol 7(Pt 1):109PubMedPubMedCentralGoogle Scholar
  79. 79.
    Bantug GR, Galluzzi L, Kroemer G, Hess C (2018) The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 18(1):19–34CrossRefPubMedGoogle Scholar
  80. 80.
    Burrows N, Maxwell PH (2017) Hypoxia and B cells. Exp Cell Res 356(2):197–203CrossRefPubMedGoogle Scholar
  81. 81.
    Song A, Zhang Y, Han L, Yegutkin GG, Liu H, Sun K, D’Alessandro A, Li J, Karmouty-Quintana H, Iriyama T, Weng T, Zhao S, Wang W, Wu H, Nemkov T, Subudhi AW, Jameson-van Houten S, Julian CG, Lovering AT, Hansen KC, Zhang H, Bogdanov M, Dowhan W, Jin J, Kellems RE, Eltzschig HK, Blackburn M, Roach RC, Xia Y (2017) Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nat Commun 8:14108CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Liu H et al (2016) Adenosine signaling-mediated metabolic reprogramming regulates erythropoiesis. Blood :2437–2437Google Scholar
  83. 83.
    Palazon A et al (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Stefania M et al (2005) A3 adenosine receptors modulate hypoxia-inducible factor-1alpha expression in human A375 melanoma cells. Neoplasia 7(10):894–903CrossRefGoogle Scholar
  85. 85.
    Gessi S et al (2013) A 1 and a 3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacol Res 76(10):157–170CrossRefPubMedGoogle Scholar
  86. 86.
    Torres A, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, Uribe D, Niechi I, Spichiger C, Rocha JD, Ramirez M, Salazar-Onfray F, San Martín R, Quezada C (2019) Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 adenosine receptor activation under hypoxia. Cancer Lett 446:112–122CrossRefGoogle Scholar
  87. 87.
    Lagory EL, Giaccia AJ (2016) The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol 18(4):356CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fraisl P, Aragonés J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8(2):139CrossRefPubMedGoogle Scholar
  89. 89.
    Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5(9):712–721CrossRefPubMedGoogle Scholar
  90. 90.
    Xie H, Simon MC (2017) Oxygen availability and metabolic reprogramming in cancer. J Biol Chem 292(41):jbc.R117.799973CrossRefGoogle Scholar
  91. 91.
    Chen CH et al (2001) Regulation of glut1 mRNA by Hypoxia-inducible Factor-1. J Biol Chem 276(12):9519–9525Google Scholar
  92. 92.
    Borg N, Alter C, Görldt N, Jacoby C, Ding Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, Flögel U, Schrader J (2017) CD73 on T-cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136:297–313CrossRefPubMedGoogle Scholar
  93. 93.
    Wang X, Yang K, Xie Q, Wu Q, Mack SC, Shi Y, Kim LJY, Prager BC, Flavahan WA, Liu X, Singer M, Hubert CG, Miller TE, Zhou W, Huang Z, Fang X, Regev A, Suvà ML, Hwang TH, Locasale JW, Bao S, Rich JN (2017) Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nat Neurosci 20(5):661–673CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DYR (2012) Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 15(6):885–894CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49(6):473–497CrossRefGoogle Scholar
  96. 96.
    Jimenez-Mateos EM, Smith J, Nicke A, Engel T (2018) Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull S0361-9230(18):30734–2Google Scholar
  97. 97.
    Liu HT, Sabirov RZ, Okada Y (2008) Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 4(2):147–154CrossRefPubMedGoogle Scholar
  98. 98.
    Hirayama Y, Koizumi S (2017) Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning. Glia 65(3):523–530CrossRefPubMedGoogle Scholar
  99. 99.
    Lizhen L et al (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28(3):468–481CrossRefGoogle Scholar
  100. 100.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883CrossRefPubMedGoogle Scholar
  101. 101.
    Alessandra P et al (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci U S A 105(23):8067–8072CrossRefGoogle Scholar
  102. 102.
    Ghiringhelli F, Apetoh LA (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178CrossRefPubMedGoogle Scholar
  103. 103.
    Andrea V et al (2013) Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection. Diabetes 62(5):1665–1675CrossRefGoogle Scholar
  104. 104.
    Vergani A, Tezza S, D’Addio F, Fotino C, Liu K, Niewczas M, Bassi R, Molano RD, Kleffel S, Petrelli A, Soleti A, Ammirati E, Frigerio M, Visner G, Grassi F, Ferrero ME, Corradi D, Abdi R, Ricordi C, Sayegh MH, Pileggi A, Fiorina P (2013) Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation 127(4):463–475CrossRefPubMedGoogle Scholar
  105. 105.
    Di VF (2013) The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev 65(3):872–905CrossRefGoogle Scholar
  106. 106.
    Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L, Adinolfi E (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 34(41):5240–5251CrossRefPubMedGoogle Scholar
  107. 107.
    Gómez-Villafuertes R et al (2010) Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 276(18):5307–5325CrossRefGoogle Scholar
  108. 108.
    Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31(1):24–31CrossRefPubMedGoogle Scholar
  109. 109.
    Martin M et al (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Huang L, Zhang C, Su L, Song Z (2017) GSK3β attenuates TGF-β1 induced epithelial–mesenchymal transition and metabolic alterations in ARPE-19 cells. Biochem Biophys Res Commun 486(3):744–751CrossRefPubMedGoogle Scholar
  111. 111.
    Tafani M, de Santis E, Coppola L, Perrone GA, Carnevale I, Russo A, Pucci B, Carpi A, Bizzarri M, Russo MA (2014) Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression. Biomed Pharmacother 68(1):1–5CrossRefPubMedGoogle Scholar
  112. 112.
    Henrique BDS et al (2018) The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559(7713):264–268Google Scholar
  113. 113.
    Adinolfi E et al (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99(2):706–708CrossRefPubMedGoogle Scholar
  114. 114.
    Raffaghello L, Chiozzi P, Falzoni S, di Virgilio F, Pistoia V (2006) The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Res 66(2):907–914CrossRefPubMedGoogle Scholar
  115. 115.
    Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, di Virgilio F (1999) Increased proliferation rate of lymphoid cells transfected with the P2X(7) ATP receptor. J Biol Chem 274(47):33206–33208CrossRefPubMedGoogle Scholar
  116. 116.
    Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, di Virgilio F (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16(7):3260–3272CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Amoroso F, Falzoni S, Adinolfi E, Ferrari D, di Virgilio F (2012) The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Differ 3(8):e370CrossRefGoogle Scholar
  118. 118.
    De Marchi E et al (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38(19):3636–3650Google Scholar
  119. 119.
    Sara T et al (2012) Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation. J Immunol 189(3):1303–1310CrossRefGoogle Scholar
  120. 120.
    Di VF et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47(1):15CrossRefGoogle Scholar
  121. 121.
    North RA (2016) P2X receptors. Philos Trans R Soc Lond 371(1700):20150427CrossRefGoogle Scholar
  122. 122.
    De ME et al (2016) P2X7 receptor as a therapeutic target. Adv Protein Chem Struct Biol 104:39CrossRefGoogle Scholar
  123. 123.
    Danquah W et al (2016) Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci Transl Med 8(366):366ra162CrossRefPubMedGoogle Scholar
  124. 124.
    Gilbert SM et al (2017) A phase 1 clinical trial demonstrates nfP2X 7 targeted antibodies provide a novel, safe and tolerable topical therapy for BCC. Br J Dermatol 177(1):117–124CrossRefPubMedGoogle Scholar
  125. 125.
    Laetitia A et al (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70(3):855–858CrossRefGoogle Scholar
  126. 126.
    Ma Y et al (2013) Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38(4):729–741CrossRefGoogle Scholar
  127. 127.
    Lecciso M et al (2017) ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol 8:1918CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Giovanna B et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232CrossRefGoogle Scholar
  129. 129.
    Yue N et al (2017) Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 14(1):102CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Laskaris LE et al (2016) Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 173(4):666–680CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Mondelli V et al (2017) Brain microglia in psychiatric disorders. Lancet Psychiatry 4(7):S2215036617301013CrossRefGoogle Scholar
  132. 132.
    Kesteren CFMGV et al (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7(3):e1075CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Fischer Y, Becker C, Löken C et al (1999) J Biol Chem 274(2):755–761CrossRefPubMedGoogle Scholar
  134. 134.
    Balasubramanian R et al (2014) Enhancement of glucose uptake in mouse skeletal muscle cells and adipocytes by P2Y6 receptor agonists. PLoS One 9(12):e116203–e116203CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Hillairebuys D et al (1993) Stimulation of insulin secretion and improvement of glucose tolerance in rat and dog by the P2y-purinoceptor agonist, adenosine-5'-O-(2-thiodiphosphate). Br J Pharmacol 109(1):183–187CrossRefGoogle Scholar
  136. 136.
    Fernandez-Alvarez J, Hillaire-Buys D, Loubatières-Mariani MM, Gomis R, Petit P (2001) P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22(1):69–71CrossRefGoogle Scholar
  137. 137.
    Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7CrossRefPubMedGoogle Scholar
  138. 138.
    Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA (2009) Regulation of LKB1/STRAD localization and function by E-cadherin. Curr Biol 19(1):37–42CrossRefPubMedGoogle Scholar
  139. 139.
    Chiaranunt P, Ferrara JL, Byersdorfer CA (2015) Rethinking the paradigm: how comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol 68(2):564–574CrossRefPubMedGoogle Scholar
  140. 140.
    Horman S, Beauloye C, Vanoverschelde JL, Bertrand L (2012) AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 9(3):164–173CrossRefPubMedGoogle Scholar
  141. 141.
    Steinberg GR, Schertzer JD (2014) AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol 92(4):340–345CrossRefPubMedGoogle Scholar
  142. 142.
    Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Mayer A et al (2008) AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol 38(4):948–956CrossRefPubMedGoogle Scholar
  144. 144.
    Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, Li K, Ma T, Wang H, Ni L, Zhu S, Cao N, Zhu D, Zhang Y, Akassoglou K, Dong C, Driggers EM, Ding S (2017) Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548(7666):228–233CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, Hofmann J, Raifer H, Vachharajani N, Carrascosa LC, Lamp B, Nist A, Stiewe T, Shaul Y, Adhikary T, Zaiss MM, Lauth M, Steinhoff U, Visekruna A (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun 10(1):760CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Julia R et al (2013) AMPKα1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43(4):889–896CrossRefGoogle Scholar
  147. 147.
    Gj VDW et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78CrossRefGoogle Scholar
  148. 148.
    Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186(6):3299–3303CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Grady SL, Hwang J, Vastag L, Rabinowitz JD, Shenk T (2012) Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) Glycohydrolase. J Virol 86(15):8259–8268CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Maciver NJ et al (2011) The liver kinase B1 (LKB1) is a central regulator of T cell development, activation, and metabolism. J Immunol 187(8):4187–4198CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ III, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH (2017) Foxp3 reprograms T cell metabolism to function in low-glucose, High-Lactate Environments. Cell Metab 25(6):1282–1293CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Rémi M et al (2013) AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18(2):251–264CrossRefGoogle Scholar
  153. 153.
    Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Gualdoni GA, Mayer KA, Göschl L, Boucheron N, Ellmeier W, Zlabinger GJ (2016) The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J 30(11):3800–3809CrossRefPubMedGoogle Scholar
  155. 155.
    Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186(6):3299–3303CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Sereni MI et al (2017) Kinase-driven metabolic signalling as a predictor of response to carboplatin-paclitaxel adjuvant treatment in advanced ovarian cancers. Br J Cancer 117(4):494–502Google Scholar
  157. 157.
    Song M, Sandoval TA, Chae CS, Chopra S, Tan C, Rutkowski MR, Raundhal M, Chaurio RA, Payne KK, Konrad C, Bettigole SE, Shin HR, Crowley MJP, Cerliani JP, Kossenkov AV, Motorykin I, Zhang S, Manfredi G, Zamarin D, Holcomb K, Rodriguez PC, Rabinovich GA, Conejo-Garcia JR, Glimcher LH, Cubillos-Ruiz JR (2018) IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562(7727):423–428CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Schworer S, Vardhana SA, Thompson CB (2019) Cancer metabolism drives a stromal regenerative response. Cell Metab 29(3):576–591CrossRefPubMedGoogle Scholar
  159. 159.
    Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536(7617):479–483CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, Bilder D, Brech A, Stenmark H, Rusten TE (2017) Microenvironmental autophagy promotes tumour growth. Nature 541(7637):417–420CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Yang Z et al (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16(1):79CrossRefGoogle Scholar
  162. 162.
    Lin L, Huang H, Liao W, Ma H, Liu J, Wang L, Huang N, Liao Y, Liao W (2015) MACC1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene 34(21):2700–2710CrossRefPubMedGoogle Scholar
  163. 163.
    Yang T et al (2016) MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget 7(14):18085–18094PubMedPubMedCentralGoogle Scholar
  164. 164.
    Kubben N, Misteli T (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18(10):595–609Google Scholar
  165. 165.
    Cantó C et al (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11(3):213–219CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Garciaroves PM et al (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 283(51):35724–35734CrossRefGoogle Scholar
  167. 167.
    Maniam S et al (2015) Cofactor strap regulates oxidative phosphorylation and mitochondrial p53 activity through ATP synthase. Cell Death Differ 22(1):156–163CrossRefPubMedGoogle Scholar
  168. 168.
    Sanchezmacedo N et al (2013) Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ 20(4):659–668CrossRefGoogle Scholar
  169. 169.
    Klingenberg M (1990) Mechanism and evolution of the uncoupling protein of brown adipose tissue. Trends Biochem Sci 15(3):108–12Google Scholar
  170. 170.
    Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415(6867):96–99CrossRefPubMedGoogle Scholar
  171. 171.
    Claire P et al (2008) Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization. FASEB J 22(1):9–18CrossRefGoogle Scholar
  172. 172.
    Alexandra K et al (2014) Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. PLoS Genet 10(6):e1004385CrossRefGoogle Scholar
  173. 173.
    Jin Z et al (2014) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30(24):4860–4873Google Scholar
  174. 174.
    Vozza A, Parisi G, de Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E, Scarcia P, Palmieri F, Bouillaud F, Fiermonte G (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 111(3):960–965CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Zhonglin X et al (2008) Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes 57(12):3222–3230CrossRefGoogle Scholar
  176. 176.
    Marc F et al (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54(5):1331–1339CrossRefGoogle Scholar
  177. 177.
    Pauline E et al (2014) Mitochondrial retrograde signaling mediated by UCP2 inhibits cancer cell proliferation and tumorigenesis. Cancer Res 74(14):3971–3982CrossRefGoogle Scholar
  178. 178.
    Wang M et al (2017) Uncoupling protein 2 downregulation by hypoxia through repression of peroxisome proliferator-activated receptor γ promotes chemoresistance of non-small cell lung cancer. Oncotarget 8(5):8083PubMedGoogle Scholar
  179. 179.
    Boutoual R et al (2018) Defects in the mitochondrial-tRNA modification enzymes MTO1 and GTPBP3 promote different metabolic reprogramming through a HIF-PPARγ-UCP2-AMPK axis. Sci Rep 8(1):1163CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Szelechowski M et al (2018) Metabolic reprogramming in amyotrophic lateral sclerosis. Sci Rep 8(1):3953CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Daurio NA et al (2016) AMPK activation and metabolic reprogramming by tamoxifen through estrogen receptor-independent mechanisms suggests new uses for this therapeutic modality in cancer treatment. Cancer Res 76(11):3295CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Pulito C, Mori F, Sacconi A, Goeman F, Ferraiuolo M, Pasanisi P, Campagnoli C, Berrino F, Fanciulli M, Ford RJ, Levrero M, Pediconi N, Ciuffreda L, Milella M, Steinberg GR, Cioce M, Muti P, Strano S, Blandino G (2017) Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discov 3:17022CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Lodi A, Woods SM, Ronen SM (2014) Magnetic resonance-detectable metabolic consequences of MEK inhibition. NMR Biomed 27(6):700CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, COROMINAS-FAJA B, Rodríguez-Gallego E, Fernández-Arroyo S, Martin-Castillo B, Joven J, MENENDEZ MENENDEZ J (2014) Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 13(7):1132–1144CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Zhou X et al (2016) Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget 7(1):873–884PubMedGoogle Scholar
  186. 186.
    Zarrouk M et al (2014) Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One 9(9):e106710CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47(1):185–210CrossRefPubMedGoogle Scholar
  188. 188.
    Popovics P, Frigo DE, Schally AV, Rick FG (2015) Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin Ther Targets 19(5):617–632CrossRefPubMedGoogle Scholar
  189. 189.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Gerhart-Hines Z et al (2011) The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD +. Mol Cell 44(6):851–863CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Maus M, Cuk M, Patel B, Lian J, Ouimet M, Kaufmann U, Yang J, Horvath R, Hornig-Do HT, Chrzanowska-Lightowlers ZM, Moore KJ, Cuervo AM, Feske S (2017) Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab 25(3):698–712CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Gong KW et al (2001) cAMP-specific phosphodiesterase TbPDE1 is not essential in Trypanosoma brucei in culture or during midgut infection of tsetse flies. Mol Biochem Parasitol 116(2):229CrossRefPubMedGoogle Scholar
  193. 193.
    Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, Deng L, Dong J, Shimizu K, Soga T, Tomita M, Palsson BO, Robert M (2014) Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol. Nat Commun 5(1):3233CrossRefPubMedGoogle Scholar
  194. 194.
    Lu J et al (2017) Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1. Mol Cell Endocrinol 470:105–114Google Scholar
  195. 195.
    Tong T, Ryu SE, Min Y, de March CA, Bushdid C, Golebiowski J, Moon C, Park T (2017) Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP–PKA pathway. Sci Rep 7(1):9471CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Nissim I et al (2014) The molecular and metabolic influence of long term agmatine consumption. J Biol Chem 289(14):9710–9729CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Carlessi R, Chen Y, Rowlands J, Cruzat VF, Keane KN, Egan L, Mamotte C, Stokes R, Gunton JE, Bittencourt PIH, Newsholme P (2017) GLP-1 receptor signalling promotes β-cell glucose metabolismviamTOR-dependent HIF-1α activation. Sci Rep 7(1):2661CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zhenwei Tang
    • 1
    • 2
    • 3
    • 4
  • Wenrui Ye
    • 4
  • Haotian Chen
    • 4
  • Xinwei Kuang
    • 1
    • 2
    • 3
  • Jia Guo
    • 1
    • 2
    • 3
  • Minmin Xiang
    • 1
    • 2
    • 3
  • Cong Peng
    • 1
    • 2
    • 3
  • Xiang Chen
    • 1
    • 2
    • 3
    Email author
  • Hong Liu
    • 1
    • 2
    • 3
    • 5
    Email author
  1. 1.Department of DermatologyXiangya Hospital, Central South UniversityChangshaChina
  2. 2.Hunan Key Laboratory of Skin Cancer and PsoriasisXiangya Hospital, Central South UniversityChangshaChina
  3. 3.Hunan Engineering Research Center of Skin Health and DiseaseXiangya Hospital, Central South UniversityChangshaChina
  4. 4.Clinical Medicine Eight-Year ProgramXiangya Medical School of Central South UniversityChangshaChina
  5. 5.Center for Molecular Metabolomics, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations