Advertisement

Purinergic Signalling

, Volume 15, Issue 3, pp 403–420 | Cite as

High-resolution detection of ATP release from single cultured mouse dorsal horn spinal cord glial cells and its modulation by noradrenaline

  • Varen Eersapah
  • Sylain Hugel
  • Rémy SchlichterEmail author
Original Article

Abstract

Human embryonic kidney 293 (HEK293) cells stably transfected with the rat P2X2 receptor subunit were preincubated with 200 nM progesterone (HEK293-P2X2-PROG), a potent positive allosteric modulator of homomeric P2X2 receptors, and used to detect low nanomolar concentrations of extracellular ATP. Fura-2-loaded HEK293-P2X2-PROG cells were acutely plated on top of cultured DH glial cells to quantify ATP release from single DH glial cells. Application of the α1 adrenoceptor agonist phenylephrine (PHE, 20 μM) or of a low K+ (0.2 mM) solution evoked reversible increases in the intracellular calcium concentration ([Ca2+]i) in the biosensor cells. A reversible increase in [Ca2+]i was also detected in half of the biosensor cells following the interruption of general extracellular perfusion. All increases in [Ca2+]i were blocked in the presence of the P2X2 antagonist PPADS or after preloading the glial cells with the calcium chelator BAPTA, indicating that they were due to calcium-dependent ATP release from the glial cells. ATP release induced by PHE was blocked by -l-phenylalanine 2-naphtylamide (GPN) that permeabilizes secretory lysosomes and bafilomycin A1 (Baf A1), an inhibitor of the H+-pump of acidic secretory vesicles. By contrast, ATP release induced by application of a low-K+ solution was abolished by Baf A1 but not by GPN. Finally, spontaneous ATP release observed after interrupting general perfusion was insensitive to both GPN and Baf A1 pretreatment. Our results indicate that ATP is released in a calcium-dependent manner from two distinct vesicular pools and one non-vesicular pool coexisting in DH glial cells and that noradrenaline and PHE selectively target the secretory lysosome pool.

Keywords

Astrocyte Exocytosis Secretory lysosome Vesicular release Non-vesicular release 

Notes

Acknowledgments

We would like to thank Mrs. Catherine Moreau and Mrs. Chantal Fitterer for excellent technical assistance. This work was supported by the Centre National de la Recherche Scientifique, Université de Strasbourg, and the French National Research Agency (ANR) contract ANR-17-EURE-0022.

V.E. was the recipient of an Initiative d’Excellence (IdEx) fellowship in the framework of the Investissement d’Avenir program of the Université de Strasbourg.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for care and use of animals were followed.

Supplementary material

11302_2019_9673_MOESM1_ESM.pdf (199 kb)
ESM 1 (PDF 199 kb)

References

  1. 1.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284.  https://doi.org/10.1016/j.cell.2009.09.028 Google Scholar
  2. 2.
    Cordero-Erausquin M, Inquimbert P, Schlichter R, Hugel S (2016) Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience 338:230–247.  https://doi.org/10.1016/j.neuroscience.2016.08.048 Google Scholar
  3. 3.
    Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57(1):1–164Google Scholar
  4. 4.
    Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5(7):565–575.  https://doi.org/10.1038/nrn1431 Google Scholar
  5. 5.
    Pertovaara A (2006) Noradrenergic pain modulation. Prog Neurobiol 80(2):53–83.  https://doi.org/10.1016/j.pneurobio.2006.08.001 Google Scholar
  6. 6.
    Budai D, Harasawa I, Fields HL (1998) Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha2-adrenergic receptors. J Neurophysiol 80(5):2244–2254Google Scholar
  7. 7.
    Lyons WE, Fritschy JM, Grzanna R (1989) The noradrenergic neurotoxin DSP-4 eliminates the coeruleospinal projection but spares projections of the A5 and A7 groups to the ventral horn of the rat spinal cord. J Neurosci 9(5):1481–1489Google Scholar
  8. 8.
    Hitoto T, Tsuruoka M, Hiruma Y, Matsui Y (1998) A delta afferent fiber stimulation activates descending noradrenergic system from the locus coeruleus. Neurochem Res 23(12):1461–1465Google Scholar
  9. 9.
    Tsuruoka M, Hitoto T, Hiruma Y, Matsui Y (1999) Neurochemical evidence for inflammation-induced activation of the coeruleospinal modulation system in the rat. Brain Res 821(1):236–240Google Scholar
  10. 10.
    Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T (2012) Biological implications of coeruleospinal inhibition of nociceptive processing in the spinal cord. Front Integr Neurosci 6:87.  https://doi.org/10.3389/fnint.2012.00087 Google Scholar
  11. 11.
    Feng YP, Yang K, Li YQ (2002) Norepinephrine depresses the capsaicin-evoked miniature excitatory postsynaptic currents in substantia gelatinosa of the rat spinal cord. Neurosci Lett 322(2):99–102Google Scholar
  12. 12.
    Funai Y, Pickering AE, Uta D, Nishikawa K, Mori T, Asada A, Imoto K, Furue H (2014) Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms. Pain 155(3):617–628.  https://doi.org/10.1016/j.pain.2013.12.018 Google Scholar
  13. 13.
    Hickey L, Li Y, Fyson SJ, Watson TC, Perrins R, Hewinson J, Teschemacher AG, Furue H, Lumb BM, Pickering AE (2014) Optoactivation of locus ceruleus neurons evokes bidirectional changes in thermal nociception in rats. J Neurosci 34(12):4148–4160.  https://doi.org/10.1523/JNEUROSCI.4835-13.2014 Google Scholar
  14. 14.
    Kawasaki Y, Kumamoto E, Furue H, Yoshimura M (2003) Alpha 2 adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 98(3):682–689 doi:00000542-200303000-00016 [pii] Google Scholar
  15. 15.
    Sonohata M, Furue H, Katafuchi T, Yasaka T, Doi A, Kumamoto E, Yoshimura M (2004) Actions of noradrenaline on substantia gelatinosa neurones in the rat spinal cord revealed by in vivo patch recording. J Physiol 555 (Pt 2):515–526. doi: https://doi.org/10.1113/jphysiol.2003.054932
  16. 16.
    North RA, Yoshimura M (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol 349:43–55Google Scholar
  17. 17.
    Baba H, Goldstein PA, Okamoto M, Kohno T, Ataka T, Yoshimura M, Shimoji K (2000) Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2): effects on somatodendritic sites of GABAergic neurons. Anesthesiology 92 (2):485–492Google Scholar
  18. 18.
    Baba H, Shimoji K, Yoshimura M (2000) Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 1): effects on axon terminals of GABAergic and glycinergic neurons. Anesthesiology 92(2):473–484Google Scholar
  19. 19.
    Seibt F, Schlichter R (2015) Noradrenaline-mediated facilitation of inhibitory synaptic transmission in the dorsal horn of the rat spinal cord involves interlaminar communications. Eur J Neurosci 42(9):2654–2665.  https://doi.org/10.1111/ejn.13077 Google Scholar
  20. 20.
    Yaksh TL (1985) Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22(5):845–858Google Scholar
  21. 21.
    Hosli E, Hosli L (1982) Evidence for the existence of alpha- and beta-adrenoceptors on neurones and glial cells of cultured rat central nervous system--an autoradiographic study. Neuroscience 7(11):2873–2881Google Scholar
  22. 22.
    Hagihira S, Senba E, Yoshida S, Tohyama M, Yoshiya I (1990) Fine structure of noradrenergic terminals and their synapses in the rat spinal dorsal horn: an immunohistochemical study. Brain Res 526(1):73–80.  https://doi.org/10.1016/0006-8993(90)90251-6 Google Scholar
  23. 23.
    Holstege JC, Bongers CM (1991) Ultrastructural aspects of the coeruleo-spinal projection. Prog Brain Res 88:143–156Google Scholar
  24. 24.
    Satoh K, Kashiba A, Kimura H, Maeda T (1982) Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord: an electron-microscopic study using glyoxylic acid-potassium permanganate fixation. Cell Tissue Res 222(2):359–378Google Scholar
  25. 25.
    Rajaofetra N, Ridet JL, Poulat P, Marlier L, Sandillon F, Geffard M, Privat A (1992) Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline. J Neurocytol 21(7):481–494Google Scholar
  26. 26.
    Ridet JL, Rajaofetra N, Teilhac JR, Geffard M, Privat A (1993) Evidence for nonsynaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuron-glia interactions. Neuroscience 52(1):143–157Google Scholar
  27. 27.
    Ridet JL, Sandillon F, Rajaofetra N, Geffard M, Privat A (1992) Spinal dopaminergic system of the rat: light and electron microscopic study using an antiserum against dopamine, with particular emphasis on synaptic incidence. Brain Res 598(1–2):233–241.  https://doi.org/10.1016/0006-8993(92)90188-f Google Scholar
  28. 28.
    Stoop R, Thomas S, Rassendren F, Kawashima E, Buell G, Surprenant A, North RA (1999) Contribution of individual subunits to the multimeric P2X(2) receptor: estimates based on methanethiosulfonate block at T336C. Mol Pharmacol 56(5):973–981Google Scholar
  29. 29.
    De Roo M, Boue-Grabot E, Schlichter R (2010) Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. Neuropharmacology 58(3):569–577.  https://doi.org/10.1016/j.neuropharm.2009.12.002 Google Scholar
  30. 30.
    Dallwig R, Vitten H, Deitmer JW (2000) A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Cell Calcium 28(4):247–259.  https://doi.org/10.1054/ceca.2000.0153 Google Scholar
  31. 31.
    Hartel K, Singaravelu K, Kaiser M, Neusch C, Hulsmann S, Deitmer JW (2007) Calcium influx mediated by the inwardly rectifying K+ channel Kir4.1 (KCNJ10) at low external K+ concentration. Cell Calcium 42(3):271–280.  https://doi.org/10.1016/j.ceca.2006.12.004 Google Scholar
  32. 32.
    Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20(5):1800–1808Google Scholar
  33. 33.
    Li D, Ropert N, Koulakoff A, Giaume C, Oheim M (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28(30):7648–7658.  https://doi.org/10.1523/JNEUROSCI.0744-08.2008 Google Scholar
  34. 34.
    Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9(8):945–953.  https://doi.org/10.1038/ncb1620 Google Scholar
  35. 35.
    Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266(26):17707–17712Google Scholar
  36. 36.
    Petitjean H, Hugel S, Barthas F, Bohren Y, Barrot M, Yalcin I, Schlichter R (2014) Activation of transient receptor potential vanilloid 2-expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia. Eur J Neurosci 40(8):3189–3201.  https://doi.org/10.1111/ejn.12688 Google Scholar
  37. 37.
    Hugel S, Schlichter R (2000) Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 20(6):2121–2130Google Scholar
  38. 38.
    Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2(3):241–245Google Scholar
  39. 39.
    Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem Int 57(4):411–420.  https://doi.org/10.1016/j.neuint.2010.03.019 Google Scholar
  40. 40.
    Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17(20):7673–7682Google Scholar
  41. 41.
    Zimmermann H (1999) Two novel families of ectonucleotidases: molecular structures, catalytic properties and a search for function. Trends Pharmacol Sci 20(6):231–236Google Scholar
  42. 42.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg's Arch Pharmacol 362(4–5):299–309Google Scholar
  43. 43.
    Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24(13):3413–3420Google Scholar
  44. 44.
    Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S (2007) Mechanisms of neurosteroid interactions with GABA(A) receptors. Pharmacol Ther 116(1):35–57.  https://doi.org/10.1016/j.pharmthera.2007.03.004 Google Scholar
  45. 45.
    Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci 25(50):11605–11613.  https://doi.org/10.1523/JNEUROSCI.4173-05.2005 Google Scholar
  46. 46.
    Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85(21):7972–7976Google Scholar
  47. 47.
    Jadot M, Colmant C, Wattiaux-De Coninck S, Wattiaux R (1984) Intralysosomal hydrolysis of glycyl-L-phenylalanine 2-naphthylamide. Biochem J 219(3):965–970Google Scholar
  48. 48.
    Haller T, Dietl P, Deetjen P, Volkl H (1996) The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+ release. Cell Calcium 19(2):157–165Google Scholar
  49. 49.
    Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci U S A 93(23):13268–13273Google Scholar
  50. 50.
    Blum AE, Joseph SM, Przybylski RJ, Dubyak GR (2008) Rho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes. Am J Physiol Cell Physiol 295(1):C231–C241.  https://doi.org/10.1152/ajpcell.00175.2008 Google Scholar
  51. 51.
    Dubyak GR (2012) Function without form: an ongoing search for maxi-anion channel proteins. Focus on “maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells”. Am J Physiol Cell Physiol 303(9):C913–C915.  https://doi.org/10.1152/ajpcell.00285.2012 Google Scholar
  52. 52.
    Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27(3):166–176.  https://doi.org/10.1016/j.tips.2006.01.005 Google Scholar
  53. 53.
    Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7(6):423–436.  https://doi.org/10.1038/nrn1928 Google Scholar
  54. 54.
    Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2):520–528Google Scholar
  55. 55.
    Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98(1):239–389.  https://doi.org/10.1152/physrev.00042.2016 Google Scholar
  56. 56.
    Boue-Grabot E, Pankratov Y (2017) Modulation of central synapses by astrocyte-released ATP and postsynaptic P2X receptors. Neural Plast 2017:9454275.  https://doi.org/10.1155/2017/9454275 Google Scholar
  57. 57.
    Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2(3):185–193Google Scholar
  58. 58.
    Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747.  https://doi.org/10.1371/journal.pbio.1001747 Google Scholar
  59. 59.
    Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20(4):1435–1445Google Scholar
  60. 60.
    Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282(39):28749–28758.  https://doi.org/10.1074/jbc.M700290200 Google Scholar
  61. 61.
    Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12:14.  https://doi.org/10.1186/1471-2164-12-14 Google Scholar
  62. 62.
    Fischer W, Franke H, Groger-Arndt H, Illes P (2005) Evidence for the existence of P2Y1,2,4 receptor subtypes in HEK-293 cells: reactivation of P2Y1 receptors after repetitive agonist application. Naunyn Schmiedeberg's Arch Pharmacol 371(6):466–472.  https://doi.org/10.1007/s00210-005-1070-6 Google Scholar
  63. 63.
    Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444(7118):486–489.  https://doi.org/10.1038/nature05324 Google Scholar
  64. 64.
    Inquimbert P, Rodeau JL, Schlichter R (2008) Regional differences in the decay kinetics of GABA(A) receptor-mediated miniature IPSCs in the dorsal horn of the rat spinal cord are determined by mitochondrial transport of cholesterol. J Neurosci 28(13):3427–3437.  https://doi.org/10.1523/JNEUROSCI.5076-07.2008 Google Scholar
  65. 65.
    Shu HJ, Eisenman LN, Jinadasa D, Covey DF, Zorumski CF, Mennerick S (2004) Slow actions of neuroactive steroids at GABAA receptors. J Neurosci 24(30):6667–6675.  https://doi.org/10.1523/JNEUROSCI.1399-04.2004 Google Scholar
  66. 66.
    Gundersen V, Storm-Mathisen J, Bergersen LH (2015) Neuroglial transmission. Physiol Rev 95(3):695–726.  https://doi.org/10.1152/physrev.00024.2014 Google Scholar
  67. 67.
    Harada K, Kamiya T, Tsuboi T (2015) Gliotransmitter release from astrocytes: functional, developmental, and pathological implications in the brain. Front Neurosci 9:499.  https://doi.org/10.3389/fnins.2015.00499 Google Scholar
  68. 68.
    Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104(35):14151–14156.  https://doi.org/10.1073/pnas.0704935104 Google Scholar
  69. 69.
    Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L, Wilhelm C, Galli T, Canossa M, Matteoli M (2012) TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104(4):213–228.  https://doi.org/10.1111/boc.201100070 Google Scholar
  70. 70.
    Heinemann U, Lux HD (1975) Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res 93(1):63–76Google Scholar
  71. 71.
    D'Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 87(1):87–102.  https://doi.org/10.1152/jn.00240.2001 Google Scholar
  72. 72.
    Jendelova P, Sykova E (1991) Role of glia in K+ and pH homeostasis in the neonatal rat spinal cord. Glia 4(1):56–63.  https://doi.org/10.1002/glia.440040107 Google Scholar
  73. 73.
    Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116.  https://doi.org/10.1126/science.1116916 Google Scholar
  74. 74.
    Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474Google Scholar
  75. 75.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797.  https://doi.org/10.1152/physrev.00043.2006 Google Scholar
  76. 76.
    Nakatsuka T, Gu JG (2006) P2X purinoceptors and sensory transmission. Pflugers Arch 452(5):598–607.  https://doi.org/10.1007/s00424-006-0057-6 Google Scholar
  77. 77.
    Tsuda M, Tozaki-Saitoh H, Inoue K (2010) Pain and purinergic signaling. Brain Res Rev 63(1–2):222–232.  https://doi.org/10.1016/j.brainresrev.2009.11.003 Google Scholar
  78. 78.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067Google Scholar
  79. 79.
    Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16(8):2495–2507Google Scholar
  80. 80.
    Shiokawa H, Nakatsuka T, Furue H, Tsuda M, Katafuchi T, Inoue K, Yoshimura M (2006) Direct excitation of deep dorsal horn neurones in the rat spinal cord by the activation of postsynaptic P2X receptors. J Physiol 573 (Pt 3):753–763. doi: https://doi.org/10.1113/jphysiol.2006.108613
  81. 81.
    Foley JC, McIver SR, Haydon PG (2011) Gliotransmission modulates baseline mechanical nociception. Mol Pain 7:93.  https://doi.org/10.1186/1744-8069-7-93 Google Scholar
  82. 82.
    Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28.  https://doi.org/10.1016/j.pain.2013.06.022 Google Scholar
  83. 83.
    Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K, Uneyama H, Ichikawa R, Salter MW, Tsuda M, Inoue K (2016) Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 7:12529.  https://doi.org/10.1038/ncomms12529 Google Scholar
  84. 84.
    Aoyama R, Okada Y, Yokota S, Yasui Y, Fukuda K, Shinozaki Y, Yoshida H, Nakamura M, Chiba K, Yasui Y, Kato F, Toyama Y (2011) Spatiotemporal and anatomical analyses of P2X receptor-mediated neuronal and glial processing of sensory signals in the rat dorsal horn. Pain 152(9):2085–2097.  https://doi.org/10.1016/j.pain.2011.05.014 Google Scholar
  85. 85.
    Fritschy JM, Lyons WE, Mullen CA, Kosofsky BE, Molliver ME, Grzanna R (1987) Distribution of locus coeruleus axons in the rat spinal cord: a combined anterograde transport and immunohistochemical study. Brain Res 437(1):176–180.  https://doi.org/10.1016/0006-8993(87)91541-1 Google Scholar
  86. 86.
    Singer HS, Coyle JT, Vernon N, Kallman CH, Price DL (1980) The development of catecholaminergic innervation in chick spinal cord. Brain Res 191(2):417–428Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Varen Eersapah
    • 1
  • Sylain Hugel
    • 1
  • Rémy Schlichter
    • 1
    Email author
  1. 1.Centre National de la Recherche Scientifique (UPR3212), Institut des Neurosciences Cellulaires et IntégrativesUniversité de StrasbourgStrasbourgFrance

Personalised recommendations