Purinergic Signalling

, Volume 15, Issue 3, pp 287–298 | Cite as

Profiling of a suramin-derived compound library at recombinant human P2Y receptors identifies NF272 as a competitive but non-selective P2Y2 receptor antagonist

  • Nicole Brockmann
  • Parichat Sureechatchaiyan
  • David Müller
  • Tatiana Hennicke
  • Ralf Hausmann
  • Gerhard Fritz
  • Alexandra Hamacher
  • Matthias U. KassackEmail author
Original Article


Extracellular nucleotides mediate multiple physiological effects such as proliferation, differentiation, or induction of apoptosis through G protein–coupled P2Y receptors or P2X ion channels. Evaluation of the complete physiological role of nucleotides has long been hampered by a lack of potent and selective ligands for all P2 subtypes. Meanwhile, for most of the P2 receptors, selective ligands are available, but only a few potent and selective P2Y2 receptor antagonists are described. This limits the understanding of the role of P2Y2 receptors. The purpose of this study was to search for P2Y2 receptor antagonists by a combinatorial screening of a library of around 415 suramin-derived compounds. Calcium fluorescence measurements at P2Y2 receptors recombinantly expressed in human 1321N1 astrocytoma cells identified NF272 [8-(4-methyl-3-(3-phenoxycarbonylimino-benzamido)benzamido)-naphthalene-1,3,5-trisulfonic acid trisodium salt] as a competitive P2Y2 receptor antagonist with a Ki of 19 μM which is 14-fold more potent than suramin at this receptor subtype. The SCHILD analysis of competitive inhibition resulted in a pA2 value of 5.03 ± 0.22 (mean ± SEM) with a slope not significantly different from unity. Among uracil-nucleotide–preferring P2Y receptors, NF272 shows a moderate selectivity over P2Y4 (3.6-fold) and P2Y6 (5.7-fold). However, NF272 is equipotent at P2Y1, and even more potent at P2Y11 and P2Y12 receptors. Up to 250 μM, NF272 showed no cytotoxicity in MTT cell viability assays in 1321N1, HEK293, and OVCAR-3 cells. Further, NF272 was able to inhibit the ATP-induced calcium signal in OVCAR-3 cells demonstrated to express P2Y2 receptors. In conclusion, NF272 is a competitive but non-selective P2Y2 receptor antagonist with 14-fold higher potency than suramin lacking cytotoxic effects. Therefore, NF272 may serve as a lead structure for further development of P2Y2 receptor antagonists.


Purinergic receptors P2Y2 receptor Calcium assay Antagonist Suramin 



We gratefully acknowledge the device of around 1000 suramin analogues from Prof. Peter Nickel, Bonn.

Funding information

The Deutsche Forschungsgemeinschaft (DFG) is acknowledged for funds used to purchase the Arrayscan XTI high content imager, ThermoFisher, Langenselbold, Germany, used in this research (INST 208/690-1).

Compliance with ethical standards

Conflict of interest

Nicole Brockmann declares that she has no conflict of interest.

Parichat Sureechatchaiyan declares that she has no conflict of interest.

David Müller declares that he has no conflict of interest.

Tatiana Hennicke declares that she has no conflict of interest.

Ralf Hausmann declares that he has no conflict of interest.

Gerhard Fritz declares that he has no conflict of interest.

Alexandra Hamacher declares that she has no conflict of interest.

Matthias U. Kassack declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11302_2019_9663_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30.6 kb)
11302_2019_9663_MOESM2_ESM.pptx (65 kb)
Figure S1 (PPTX 65.4 kb)


  1. 1.
    Jacobson KA, Boeynaems J-M (Jul. 2010) P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today 15(13–14):570–578CrossRefGoogle Scholar
  2. 2.
    Boeynaems J-M, Communi D, Robaye B (2012) Overview of the pharmacology and physiological roles of P2Y receptors. Wiley Interdiscip Rev Membr Transp Signal 1(5):581–588CrossRefGoogle Scholar
  3. 3.
    Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MAM, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, di Virgilio F, Virchow JC, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919CrossRefGoogle Scholar
  4. 4.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286CrossRefGoogle Scholar
  5. 5.
    Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64(4):785–795CrossRefGoogle Scholar
  6. 6.
    Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71(1):333–359CrossRefGoogle Scholar
  7. 7.
    Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99(1):16–34CrossRefGoogle Scholar
  8. 8.
    Burnstock G (2013) Purinergic signalling: pathophysiology and therapeutic potential. Keio J Med 62(3):63–73CrossRefGoogle Scholar
  9. 9.
    Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5(1):75–89CrossRefGoogle Scholar
  10. 10.
    Ochoa-Cortes F, Liñán-Rico A, Jacobson KA, Christofi FL (2014) Potential for developing purinergic drugs for gastrointestinal diseases. Inflamm Bowel Dis 20(7):1259–1287CrossRefGoogle Scholar
  11. 11.
    Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49CrossRefGoogle Scholar
  12. 12.
    von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61CrossRefGoogle Scholar
  13. 13.
    Jacobson KA, Jayasekara MPS, Costanzi S (2012) Molecular structure of P2Y receptors: mutagenesis, modeling, and chemical probes. Wiley Interdiscip Rev Membr Transp Signal 1(6):815–827CrossRefGoogle Scholar
  14. 14.
    Seye CI, Yu N, González FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279(34):35679–35686CrossRefGoogle Scholar
  15. 15.
    Eun SY, Park SW, Lee JH, Chang KC, Kim HJ (2014) P2Y(2)R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production. Free Radic Biol Med 69:157–166CrossRefGoogle Scholar
  16. 16.
    Stachon P et al (2014) Extracellular ATP induces atherosclerosis and vascular inflammation via purinergic receptor 2 (P2Y2) in mice. Cardiovasc Res 103(suppl 1):S97Google Scholar
  17. 17.
    Müller T, Idzko M (2012) P2Y receptors in lung inflammation. Wiley Interdiscip Rev Membr Transp Signal 1(6):755–762CrossRefGoogle Scholar
  18. 18.
    Vanderstocken G, Bondue B, Horckmans M, di Pietrantonio L, Robaye B, Boeynaems JM, Communi D (2010) P2Y2 receptor regulates VCAM-1 membrane and soluble forms and eosinophil accumulation during lung inflammation. J Immunol 185(6):3702–3707CrossRefGoogle Scholar
  19. 19.
    Müller T, Robaye B, Vieira RP, Ferrari D, Grimm M, Jakob T, Martin SF, di Virgilio F, Boeynaems JM, Virchow JC, Idzko M (2010) The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy 65(12):1545–1553CrossRefGoogle Scholar
  20. 20.
    Kellerman D, Evans R, Mathews D, Shaffer C (2002) Inhaled P2Y2 receptor agonists as a treatment for patients with cystic fibrosis lung disease. Adv Drug Deliv Rev 54(11):1463–1474CrossRefGoogle Scholar
  21. 21.
    Kellerman D, Rossi Mospan A, Engels J, Schaberg A, Gorden J, Smiley L (2008) Denufosol: a review of studies with inhaled P2Y(2) agonists that led to phase 3. Pulm Pharmacol Ther 21(4):600–607CrossRefGoogle Scholar
  22. 22.
    Lau OCF, Samarawickrama C, Skalicky SE (2014) P2Y2 receptor agonists for the treatment of dry eye disease: a review. Clin Ophthalmol 8:327–334Google Scholar
  23. 23.
    Keating GM (2015) Diquafosol ophthalmic solution 3%: a review of its use in dry eye. Drugs 75(8):911–922CrossRefGoogle Scholar
  24. 24.
    Wang S, Iring A, Strilic B, Albarrán Juárez J, Kaur H, Troidl K, Tonack S, Burbiel JC, Müller CE, Fleming I, Lundberg JO, Wettschureck N, Offermanns S (2015) P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction. J Clin Invest 125(8):3077–3086CrossRefGoogle Scholar
  25. 25.
    Magni G, Merli D, Verderio C, Abbracchio MP, Ceruti S (2015) P2Y2 receptor antagonists as anti-allodynic agents in acute and sub-chronic trigeminal sensitization: role of satellite glial cells. Glia 63(7):1256–1269CrossRefGoogle Scholar
  26. 26.
    Li N, Lu Z, Yu L, Burnstock G, Deng X, Ma B (2014) Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain 10:21CrossRefGoogle Scholar
  27. 27.
    Li W-H, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, Fang WG (2013) P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer 109(6):1666–1675CrossRefGoogle Scholar
  28. 28.
    Yang G, Zhang S, Zhang Y, Zhou Q, Peng S, Zhang T, Yang C, Zhu Z, Zhang F (2014) The inhibitory effects of extracellular ATP on the growth of nasopharyngeal carcinoma cells via P2Y2 receptor and osteopontin. J Exp Clin Cancer Res 33:53CrossRefGoogle Scholar
  29. 29.
    Xie R, Xu J, Wen G, Jin H, Liu X, Yang Y, Ji B, Jiang Y, Song P, Dong H, Tuo B (2014) The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J Biol Chem 289(27):19137–19149CrossRefGoogle Scholar
  30. 30.
    Li H, Wang LY, Qu HN, Yu LH, Burnstock G, Ni X, Xu M, Ma B (2011) P2Y2 receptor-mediated modulation of estrogen-induced proliferation of breast cancer cells. Mol Cell Endocrinol 338(1–2):28–37CrossRefGoogle Scholar
  31. 31.
    Jin H, Eun SY, Lee JS, Park SW, Lee JH, Chang KC, Kim HJ (2014) P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res 16(5):R77CrossRefGoogle Scholar
  32. 32.
    Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, González FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31(1–3):169–183CrossRefGoogle Scholar
  33. 33.
    Ali SB, Turner JJO, Fountain SJ (Nov. 2018) Constitutive P2Y 2 receptor activity regulates basal lipolysis in human adipocytes. J Cell Sci 131(22):jcs221994CrossRefGoogle Scholar
  34. 34.
    Ali S, Turner J, Fountain SJ (2018) P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells. Purinergic Signal 14(4):371–384CrossRefGoogle Scholar
  35. 35.
    Ratjen F, Durham T, Navratil T, Schaberg A, Accurso FJ, Wainwright C, Barnes M, Moss RB, TIGER-2 Study Investigator Group (2012) Long term effects of denufosol tetrasodium in patients with cystic fibrosis. J Cyst Fibros 11(6):539–549CrossRefGoogle Scholar
  36. 36.
    Charlton SJ, Brown CA, Weisman GA, Turner JT, Erb L, Boarder MR (1996) Cloned and transfected P2Y4 receptors: characterization of a suramin and PPADS-insensitive response to UTP. Br J Pharmacol 119(7):1301–1303CrossRefGoogle Scholar
  37. 37.
    Weyler S, Baqi Y, Hillmann P, Kaulich M, Hunder AM, Müller IA, Müller CE (2008) Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non-nucleotide-derived P2Y2 receptor antagonists. Bioorg Med Chem Lett 18(1):223–227CrossRefGoogle Scholar
  38. 38.
    Meghani P (2002) The design of P2Y2 antagonists for the treatment of inflammatory diseases. Abstr Pap Am Chem Soc 224(1–2):12Google Scholar
  39. 39.
    Kemp PA, Sugar RA, Jackson AD (2004) Nucleotide-mediated mucin secretion from differentiated human bronchial epithelial cells. Am J Respir Cell Mol Biol 31(4):446–455CrossRefGoogle Scholar
  40. 40.
    Kindon N et al (2017) From UTP to AR-C118925, the discovery of a potent non nucleotide antagonist of the P2Y2 receptor. Bioorg Med Chem Lett 27(21):4849–4853CrossRefGoogle Scholar
  41. 41.
    Rafehi M, Burbiel JC, Attah IY, Abdelrahman A, Müller CE (2017) Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR-C118925. Purinergic Signal 13(1):89–103CrossRefGoogle Scholar
  42. 42.
    Kassack MU, Braun K, Ganso M, Ullmann H, Nickel P, Böing B, Müller G, Lambrecht G (2004) Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem 39(4):345–357CrossRefGoogle Scholar
  43. 43.
    Ullmann H, Meis S, Hongwiset D, Marzian C, Wiese M, Nickel P, Communi D, Boeynaems JM, Wolf C, Hausmann R, Schmalzing G, Kassack MU (2005) Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J Med Chem 48(22):7040–7048CrossRefGoogle Scholar
  44. 44.
    Rettinger J et al (2005) Profiling at recombinant homomeric and heteromeric rat P2X receptors identifies the suramin analogue NF449 as a highly potent P2X1 receptor antagonist. Neuropharmacology 48(3):461–468CrossRefGoogle Scholar
  45. 45.
    Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Eckstein N, Royer HD, Communi D, Boeynaems JM, Hausmann R, Schmalzing G, Kassack MU (2010) NF546 [4,4′-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha’-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monoc. J Pharmacol Exp Ther 332(1):238–247CrossRefGoogle Scholar
  46. 46.
    Wolf C, Rosefort C, Fallah G, Kassack MU, Hamacher A, Bodnar M, Wang H, Illes P, Kless A, Bahrenberg G, Schmalzing G, Hausmann R (2011) Molecular determinants of potent P2X2 antagonism identified by functional analysis, mutagenesis, and homology docking. Mol Pharmacol 79(4):649–661CrossRefGoogle Scholar
  47. 47.
    Kassack MU, Höfgen B, Lehmann J, Eckstein N, Quillan JM, Sadée W (2002) Functional screening of G protein-coupled receptors by measuring intracellular calcium with a fluorescence microplate reader. J Biomol Screen 7(3):233–246Google Scholar
  48. 48.
    Kassack M, Nickel P (Nov. 1996) Rapid, highly sensitive gradient narrow-bore high-performance liquid chromatographic determination of suramin and its analogues. J Chromatogr B Biomed Appl 686(2):275–284CrossRefGoogle Scholar
  49. 49.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63CrossRefGoogle Scholar
  50. 50.
    Mueller H, Kassack MU, Wiese M (Sep. 2004) Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9(6):506–515CrossRefGoogle Scholar
  51. 51.
    Engelke LH, Hamacher A, Proksch P, Kassack MU (2016) Ellagic acid and resveratrol prevent the development of cisplatin resistance in the epithelial ovarian cancer cell line A2780. J Cancer 7(4):353–363CrossRefGoogle Scholar
  52. 52.
    Hennicke T, Nieweg K, Brockmann N, Kassack MU, Gottmann K, Fritz G (2015) mESC-based in vitro differentiation models to study vascular response and functionality following genotoxic insults. Toxicol Sci 144(1):138–150CrossRefGoogle Scholar
  53. 53.
    Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108CrossRefGoogle Scholar
  54. 54.
    ARUNLAKSHANA O, SCHILD HO (Mar. 1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14(1):48–58CrossRefGoogle Scholar
  55. 55.
    Cheng HC (2001) The power issue: determination of KB or Ki from IC50. A closer look at the Cheng-Prusoff equation, the Schild plot and related power equations. J Pharmacol Toxicol Methods 46(2):61–71CrossRefGoogle Scholar
  56. 56.
    Cheng HC (2004) The influence of cooperativity on the determination of dissociation constants: examination of the Cheng-Prusoff equation, the Scatchard analysis, the Schild analysis and related power equations. Pharmacol Res 50(1):21–40CrossRefGoogle Scholar
  57. 57.
    Lew MJ, Angus JA (Oct. 1995) Analysis of competitive agonist-antagonist interactions by nonlinear regression. Trends Pharmacol Sci 16(10):328–337CrossRefGoogle Scholar
  58. 58.
    Abe M, Watanabe K, Kuroda Y, Nakagawa T, Higashi H (2018) Homodimer formation by the ATP/UTP receptor P2Y2 via disulfide bridges. J Biochem 163(6):475–480CrossRefGoogle Scholar
  59. 59.
    Suzuki T, Namba K, Tsuga H, Nakata H (2006) Regulation of pharmacology by hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem Biophys Res Commun 351(2):559–565CrossRefGoogle Scholar
  60. 60.
    Erb L, Weisman GA (2012) Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 1(6):789–803CrossRefGoogle Scholar
  61. 61.
    Schultze-Mosgau A, Katzur AC, Arora KK, Stojilkovic SS, Diedrich K, Ortmann O (May 2000) Characterization of calcium-mobilizing, purinergic P2Y(2) receptors in human ovarian cancer cells. Mol Hum Reprod 6(5):435–442CrossRefGoogle Scholar
  62. 62.
    White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27(4):211–217CrossRefGoogle Scholar
  63. 63.
    Burnstock G, Di Virgilio F (Dec. 2013) Purinergic signalling and cancer. Purinergic Signal 9(4):491–540CrossRefGoogle Scholar
  64. 64.
    Sauer R, El-Tayeb A, Kaulich M, Müller CE (2009) Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y(2) receptor antagonists. Bioorg Med Chem 17(14):5071–5079CrossRefGoogle Scholar
  65. 65.
    Voogd TE, Vansterkenburg EL, Wilting J, Janssen LH (1993) Recent research on the biological activity of suramin. Pharmacol Rev 45(2):177–203Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Pharmaceutical and Medicinal Chemistry, Pharmaceutical BiochemistryHeinrich-Heine-University DuesseldorfDuesseldorfGermany
  2. 2.Institute of ToxicologyHeinrich-Heine-University of DuesseldorfDuesseldorfGermany
  3. 3.Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule AachenRWTH Aachen UniversityAachenGermany

Personalised recommendations