Advertisement

Purinergic Signalling

, Volume 14, Issue 4, pp 459–469 | Cite as

Mechanism of P2X7 receptor-dependent enhancement of neuromuscular transmission in pannexin 1 knockout mice

  • Anna S. Miteva
  • Alexander E. GaydukovEmail author
  • Valery I. Shestopalov
  • Olga P. Balezina
Original Article

Abstract

P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1−/−) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1−/− mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.

Keywords

P2X7 receptors Neuromuscular junction Pannexin 1 CaMKII L-type calcium channels 

Notes

Authors’ contributions

A.S. Miteva, A.E. Gaydukov, and O.P. Balezina conceptualized ideas, designed the study, and wrote the manuscript. A.S. Miteva and A.E. Gaydukov performed the experiments and analyzed the data; V.I. Shestopalov assisted in the discussion of the results and crafting the manuscript.

Funding information

This study was supported by the Russian Foundation for Basic Research grant 18-34-00189 and the NIH grants EY R01-021517 and P30 EY014801.

.

Compliance with ethical standards

Conflicts of interest

Anna S. Miteva declares that she has no conflict of interest.

Alexander E. Gaydukov declares that he has no conflict of interest.

Valery I. Shestopalov declares that he has no conflict of interest.

Olga P. Balezina declares that she has no conflict of interest.

Ethical approval

All experimental procedures in this study were approved by the Bioethics Committee of Moscow State University.

References

  1. 1.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067.  https://doi.org/10.1152/physrev.00015.2002 CrossRefPubMedGoogle Scholar
  2. 2.
    Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TFC, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152CrossRefGoogle Scholar
  3. 3.
    Lemos JR, Custer EE, Ortiz-Miranda S (2018) Purinergic receptor types in the hypothalamic-neurohypophysial system. J Neuroendocrinol 30:e12588.  https://doi.org/10.1111/jne.12588 CrossRefGoogle Scholar
  4. 4.
    Marín-García P, Sánchez-Nogueiro J, Gómez-Villafuertes R, León D, Miras-Portugal MT (2008) Synaptic terminals from mice midbrain exhibit functional P2X7 receptor. Neuroscience 151:361–373.  https://doi.org/10.1016/j.neuroscience.2007.10.038 CrossRefPubMedGoogle Scholar
  5. 5.
    Sánchez-Nogueiro J, Marín-García P, Bustillo D, Olivos-Oré LA, Miras-Portugal MT, Artalejo AR (2014) Subcellular distribution and early signalling events of P2X7 receptors from mouse cerebellar granule neurons. Eur J Pharmacol 744:190–202.  https://doi.org/10.1016/j.ejphar.2014.10.036 CrossRefPubMedGoogle Scholar
  6. 6.
    Sperlágh B, Köfalvi A, Deuchars J, Atkinson L, J. Milligan C, Buckley NJ, Vizi ES (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 81:1196–1211CrossRefGoogle Scholar
  7. 7.
    Vasileiou E, Montero RM, Turner CM, Vergoulas G (2010) P2X7 receptor at the heart of disease. Hippokratia 14:155–163PubMedPubMedCentralGoogle Scholar
  8. 8.
    León D, Hervás C, Miras-Portugal MT (2006) P2Y1 and P2X7 receptors induce calcium/calmodulin-dependent protein kinase II phosphorylation in cerebellar granule neurons. Eur J Neurosci 23:2999–3013.  https://doi.org/10.1111/j.1460-9568.2006.04832.x CrossRefPubMedGoogle Scholar
  9. 9.
    Gutiérrez-Martín Y, Bustillo D, Gómez-Villafuertes R, Sánchez-Nogueiro J, Torregrosa-Hetland C, Binz T, Gutiérrez LM, Miras-Portugal MT, Artalejo AR (2011) P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells. J Biol Chem 286:11370–11381.  https://doi.org/10.1074/jbc.M110.139410 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roger S, Pelegrin P, Surprenant A (2008) Cellular/molecular facilitation of P2X7 receptor currents and membrane Blebbing via constitutive and dynamic calmodulin binding. J Neurosci 28:6393–6401.  https://doi.org/10.1523/jneurosci.0696-08.2008 CrossRefPubMedGoogle Scholar
  11. 11.
    Moores TS, Hasdemir B, Vega-Riveroll L, Deuchars J, Parson SH (2005) Properties of presynaptic P2X7-like receptors at the neuromuscular junction. Brain Res 1034:40–50.  https://doi.org/10.1016/j.brainres.2004.12.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Sokolova E, Grishin S, Shakirzyanova A, Talantova M, Giniatullin R (2003) Distinct receptors and different transduction mechanisms for ATP and adenosine at the frog motor nerve endings. Eur J Neurosci 18:1254–1264.  https://doi.org/10.1046/j.1460-9568.2003.02835.x CrossRefPubMedGoogle Scholar
  13. 13.
    Correia-de-Sá P, Timóteo MA, Ribeiro JA (1996) Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J Neurophysiol 76:3910–3919CrossRefGoogle Scholar
  14. 14.
    Guarracino JF, Cinalli AR, Fernández V, Roquel LI, Losavio AS (2016) P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience 326:31–44.  https://doi.org/10.1016/j.neuroscience.2016.03.066 CrossRefPubMedGoogle Scholar
  15. 15.
    Miteva AS, Gaydukov AE, Shestopalov VI, Balezina OP (2017) The role of pannexin 1 in the purinergic regulation of synaptic transmission in mouse motor synapses. Biochem Moscow Suppl Ser 11:311–320.  https://doi.org/10.1134/S1990747817040067 CrossRefGoogle Scholar
  16. 16.
    Dvoriantchikova G, Ivanov D, Barakat D, Grinberg A, Wen R, Slepak VZ, Shestopalov VI (2012) Genetic ablation of Pannexin1 protects retinal neurons from ischemic injury. PLoS One 7:e31991.  https://doi.org/10.1371/journal.pone.0031991 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barstad JA, Lilleheil G (1968) Transversaly cut diaphragm preparation from rat. An adjuvant tool in the study of the physiology and pbarmacology of the myoneural junction. Arch Int Pharmacodyn Ther 175:373–390PubMedGoogle Scholar
  18. 18.
    Flink MT, Atchison WD (2003) Iberiotoxin-induced block of Ca2+−activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. J Pharmacol Exp Ther 305:646–652.  https://doi.org/10.1124/jpet.102.046102 CrossRefPubMedGoogle Scholar
  19. 19.
    McLachlan EM, Martin AR (1981) Non-linear summation of end-plate potentials in the frog and mouse. J Physiol 311:307–324CrossRefGoogle Scholar
  20. 20.
    Elmqvist D, Quastel DM (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol 178:505–529.  https://doi.org/10.1113/jphysiol.1965.sp007639 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ruiz R, Cano R, Casanas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable Pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31:2000–2008.  https://doi.org/10.1523/jneurosci.4663-10.2011 CrossRefPubMedGoogle Scholar
  22. 22.
    Yang L, Wang B, Long C, Wu G, Zheng H (2007) Increased asynchronous release and aberrant calcium channel activation in amyloid precursor protein deficient neuromuscular synapses. Neuroscience 149:768–778.  https://doi.org/10.1016/j.neuroscience.2007.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ling KKY, Lin M-Y, Zingg B, Feng Z, Ko CP (2010) Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 5:e15457.  https://doi.org/10.1371/journal.pone.0015457 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cano R, Ruiz R, Shen C, Tabares L, Betz WJ (2012) The functional landscape of a presynaptic nerve terminal. Cell Calcium 43:2–7.  https://doi.org/10.1016/j.ceca.2012.04.012 CrossRefGoogle Scholar
  25. 25.
    Moyer M, van Lunteren E (1999) Effect of phasic activation on endplate potential in rat diaphragm. J Neurophysiol 82:3030–3040CrossRefGoogle Scholar
  26. 26.
    Perissinotti PP, Uchitel OD (2010) Adenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junction. Eur J Neurosci 32:985–996.  https://doi.org/10.1111/j.1460-9568.2010.07332.x CrossRefPubMedGoogle Scholar
  27. 27.
    Slater CR (2015) The functional organization of motor nerve terminals. Prog Neurobiol 134:55–103.  https://doi.org/10.1016/j.pneurobio.2015.09.004 CrossRefPubMedGoogle Scholar
  28. 28.
    Horton SM, Luna Lopez C, Blevins E, Howarth H, Weisberg J, Shestopalov VI, Makarenkova HP, Shah SB (2017) Pannexin 1 modulates axonal growth in mouse peripheral nerves. Front Cell Neurosci 11:365.  https://doi.org/10.3389/fncel.2017.00365 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tarasova EO, Miteva AS, Gaidukov AE, Balezina OP (2015) The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. Biochem Moscow Suppl Ser 9:318–328.  https://doi.org/10.1134/S1990747815050141 CrossRefGoogle Scholar
  30. 30.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492.  https://doi.org/10.1007/978-3-642-28863-0_5 CrossRefPubMedGoogle Scholar
  31. 31.
    Smith DO (1991) Sources of adenosine released during neuromuscular transmission in the rat. J Physiol 432:343–354CrossRefGoogle Scholar
  32. 32.
    Santafe MM, Priego M, Obis T, Garcia N, Tomàs M, Lanuza MA, Tomàs J (2015) Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse. Eur J Neurosci 42:1775–1787.  https://doi.org/10.1111/ejn.12922 CrossRefPubMedGoogle Scholar
  33. 33.
    Ireland MF, Noakes PG, Bellingham MC (2004) P2X7-like receptor subunits enhance excitatory synaptic transmission at central synapses by presynaptic mechanisms. Neuroscience 128:269–280.  https://doi.org/10.1016/j.neuroscience.2004.06.014 CrossRefPubMedGoogle Scholar
  34. 34.
    León D, Sánchez-Nogueiro J, Marín-García P, Miras-Portugal MT (2008) Glutamate release and synapsin-I phosphorylation induced by P2X7receptors activation in cerebellar granule neurons. Neurochem Int 52:1148–1159.  https://doi.org/10.1016/j.neuint.2007.12.004 CrossRefPubMedGoogle Scholar
  35. 35.
    Cho J-H, Choi I-S, Jang I-S (2010) P2X7 receptors enhance glutamate release in hippocampal hilar neurons. Neuroreport 21:865–870.  https://doi.org/10.1097/WNR.0b013e32833d9142 CrossRefPubMedGoogle Scholar
  36. 36.
    Cuadra AE, Custer EE, Bosworth EL, Lemos JR (2014) P2X7 receptors in neurohypophysial terminals: evidence for their role in arginine-vasopressin secretion. J Cell Physiol 229:333–342.  https://doi.org/10.1002/jcp.24453 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Miras-Portugal MT, Sebastián-Serrano Á, de Diego García L, Díaz-Hernández M (2017) Neuronal P2X7 receptor: involvement in neuronal physiology and pathology. J Neurosci 37:7063–7072.  https://doi.org/10.1523/JNEUROSCI.3104-16.2017 CrossRefPubMedGoogle Scholar
  38. 38.
    Illes P, Khan TM, Rubini P (2017) Neuronal P2X7 receptors revisited: do they really exist? J Neurosci 37:7049–7062.  https://doi.org/10.1523/JNEUROSCI.3103-16.2017 CrossRefPubMedGoogle Scholar
  39. 39.
    Jinnai K, Takahashi K, Fujita T (1986) Enhancement of spontaneous acetylcholine release from motor nerve terminal by calmodulin inhibitors. Eur J Pharmacol 130:197–201CrossRefGoogle Scholar
  40. 40.
    Singh S, Prior C (1998) Prejunctional effects of the nicotinic ACh receptor agonist dimethylphenylpiperazinium at the rat neuromuscular junction. J Physiol 511(Pt 2):451–460CrossRefGoogle Scholar
  41. 41.
    Brailoiu E, Miyamoto MD, Dun NJ (2002) Calmodulin increases transmitter release by mobilizing quanta at the frog motor nerve terminal. Br J Pharmacol 137:719–727.  https://doi.org/10.1038/sj.bjp.0704923 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang Z-W (2008) Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol Neurobiol 38:153–166.  https://doi.org/10.1007/s12035-008-8039-7 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mukhamedyarov MA, Kochunova JO, Yusupova ER, Haidarov BA, Zefirov AL, Palotás A (2010) The contribution of calcium/calmodulin-dependent protein-kinase II (CaMKII) to short-term plasticity at the neuromuscular junction. Brain Res Bull 81:613–616.  https://doi.org/10.1016/J.BRAINRESBULL.2009.12.010 CrossRefPubMedGoogle Scholar
  44. 44.
    Tarasova EO, Gaydukov AE, Balezina OP (2015) Methods of activation and the role of calcium/calmodulin-dependent protein kinase II in the regulation of acetylcholine secretion in the motor synapses of mice. Neurochem J 9:101–107.  https://doi.org/10.1134/S1819712415020099 CrossRefGoogle Scholar
  45. 45.
    Gaydukov AE, Balezina OP (2017) CaMKII is involved in the choline-induced downregulation of acetylcholine release in mouse motor synapses. Acta Nat 9:110–113Google Scholar
  46. 46.
    Pagani R, Song M, McEnery M, Qin N, Tsien RW, Toro L, Stefani E, Uchitel OD (2004) Differential expression of alpha 1 and beta subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse. Neuroscience 123:75–85CrossRefGoogle Scholar
  47. 47.
    Gaydukov AE, Melnikova SN, Balezina OP (2009) Facilitation of acetylcholine secretion in mouse motor synapses caused by calcium release from depots upon activation of L-type calcium channels. Bull Exp Biol Med 148:163–166CrossRefGoogle Scholar
  48. 48.
    Urbano FJ, Uchitel OD (1999) L-type calcium channels unmasked by cell-permeant ca 2+ buffer at mouse motor nerve terminals. Pflügers Arch Eur J Physiol 437:523–528.  https://doi.org/10.1007/s004240050813 CrossRefGoogle Scholar
  49. 49.
    Gaydukov AE, Tarasova EO, Balezina OP (2013) Calcium-dependent phosphatase calcineurin downregulates evoked neurotransmitter release in neuromuscular junctions of mice. Neurochem J 7:29–33.  https://doi.org/10.1134/S1819712413010030 CrossRefGoogle Scholar
  50. 50.
    Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547.  https://doi.org/10.1083/jcb.200505155 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 183:849–863.  https://doi.org/10.1083/jcb.200805048 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ma H, Cohen S, Li B, Tsien RW (2012) Exploring the dominant role of Cav1 channels in signalling to the nucleus. Biosci Rep 33:e00009.  https://doi.org/10.1042/BSR20120099 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Huang W-H, Chao H-W, Tsai L-Y, Chung MH, Huang YS (2014) Elevated activation of CaMKIIα in the CPEB3-knockout hippocampus impairs a specific form of NMDAR-dependent synaptic depotentiation. Front Cell Neurosci 8:367.  https://doi.org/10.3389/fncel.2014.00367 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dittrich M, Homan AE, Meriney SD (2018) Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction. Curr Opin Physiol 04:15–24.  https://doi.org/10.1016/j.cophys.2018.03.004 CrossRefGoogle Scholar
  55. 55.
    Balboa E, Saavedra-Leiva F, Cea LA, Vargas AA, Ramírez V, Escamilla R, Sáez JC, Regueira T (2018) Sepsis-induced Channelopathy in skeletal muscles is associated with expression of non-selective channels. Shock 49:221–228.  https://doi.org/10.1097/SHK.0000000000000916 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Human and Animal PhysiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of PhysiologyRussian National Research Medical UniversityMoscowRussia
  3. 3.Department of Ophthalmology, Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiamiUSA
  4. 4.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations