Advertisement

Purinergic Signalling

, Volume 14, Issue 4, pp 423–432 | Cite as

Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner

  • Stephanie Kuhn
  • Katrin Splith
  • Cindy Ballschuh
  • Linda Feldbrügge
  • Felix Krenzien
  • Georgi Atanasov
  • Christian Benzing
  • Hans-Michael Hau
  • Cornelius Engelmann
  • Thomas Berg
  • Jan Schulte am Esch
  • Johann Pratschke
  • Simon C. Robson
  • Moritz SchmelzleEmail author
Original Article
  • 139 Downloads

Abstract

Plasma microparticles (MP) bear functional active ectonucleotidases of the CD39 family with implications in vascular inflammation. MP appear to be able to fuse with cells and transfer genetic information. Here, we tested whether levels of different immunomodulatory microRNAs (miRs) in plasma MP are modulated by CD39 after experimental hepatectomy. We further investigated whether horizontal transfer of miR-142-3p between mononuclear (MNC) and endothelial cells via MP is regulated by purinergic signaling. Partial hepatectomy was performed in C57BL/6 wild type and Cd39 null mice. MP were collected via ultracentrifugation. MNC were stimulated with nucleotides and nucleosides, in vitro, and tested for miR-142-3p levels. Fusion of MNC-derived MP and endothelial cells with subsequent transfer of miR-142-3p was imaged by flow cytometry and confocal microscopy. Endothelial inflammation and apoptosis were quantified after transfection with miR-142-3p. Significantly lower miR-142-3p levels were observed in plasma MP of Cd39 null mice after partial hepatectomy, when compared to C57BL/6 wild types (p < 0.05). In contrast to extracellular nucleotides, anti-inflammatory adenosine significantly increased miR-142-3p levels in MNC-derived MP, in vitro (p < 0.05). MNC-derived MP are able to transfer miR-142-3p to endothelial cells by fusion. Transfection of endothelial cells with miR-142-3p decreased TNF-α levels (p < 0.05) and endothelial apoptosis (p < 0.05). MiR-142-3p levels in MNC-derived MP are modulated by nucleoside signaling and might reflect compensatory responses in vascular inflammation. Our data suggest the transfer of genetic information via shed MP as a putative mechanism of intercellular communication—with implications in organ regeneration.

Keywords

Partial hepatectomy Liver regeneration Vascular inflammation Purinergic signaling Microvesicles MicroRNA 

Abbreviations

ATP

Adenosine triphosphate

ATPγS

Adenosine 5′-O-(3-thio)triphosphate

BM-MNC

Bone-marrow-derived mononuclear cells

BSA

Bovine serum albumin

CD

Cluster of differentiation

cel-miR-39

miR-39-derived from nematode Caenorhabditis elegans

CPD

Citrate phosphate dextrose

CSC

8-(3-chlorostyryl) caffeine

DAPI

4′,6-diamidino-2-phenylindole

DMSO

Dimethyl sulfoxide

EDTA

Ethylenediamine tetraacetic acid

E-NTPDase 1

Ectonucleoside triphosphate diphosphohydrolase 1

FBS

Fetal bovine serum

hAGO2

Human argonaute 2

HSA

Human serum albumin

HSC

Hematopoietic stem cells;

HUVEC

Human umbilical vein endothelial cells

LSEC

Liver sinusoidal endothelial cells

MP

Microparticles; miR

miRNA

MicroRNA

PBS

Phosphate buffered saline

PB-MNC

Peripheral-blood-derived mononuclear cells

P-bodies

Processing bodies

RNU6

U6 small nuclear RNA

TGFβ

Transforming growth factor beta 1

TNF-α

Tumor necrosis factor alpha

XAC

Xanthine amine congener

18S rRNA

18S ribosomal RNA

Notes

Acknowledgments

This work was presented in part at The Liver Meeting®, the 65th Annual Meeting of the AASLD in Boston, MA, USA (2014). The abstract “Plasma microparticles modulate vascular inflammation and liver regeneration via ectonucleotidase-dependent levels of miR-142-3p” was selected as a Presidential Poster of Distinction and was in the top 10% off all abstracts accepted for poster presentation.

Funding

The project was funded by the German Ministry of Education and Research (BMBF 1315883) and the Deutsche Forschungsgemeinschaft (DFG 2661/3-1).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

11302_2018_9624_MOESM1_ESM.pdf (634 kb)
ESM 1 (PDF 634 kb)

References

  1. 1.
    Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43:S45–S53CrossRefGoogle Scholar
  2. 2.
    Beldi G, Wu Y, Sun X, Imai M, Enjyoyi K, Csizmadia E, Candinas D, Erb L, Robson SC (2008) Regulated catalysis of extracellular nucleotides by vascular CD39/ENTPD1 is required for liver regeneration. Gastroenterology 135:1751–1760CrossRefGoogle Scholar
  3. 3.
    Gehling UM, Willems M, Dandri M, Petersen J, Berna M, Thill M, Wulf T, Müller L, Pollok JM, Schlagner K, Faltz C, Hossfeld DK, Rogiers X (2005) Partial hepatectomy induces mobilization of a unique population of haematopoietic progenitor cells in human healthy liver donors. J Hepatol 43:845–883CrossRefGoogle Scholar
  4. 4.
    Harb R, Xie G, Lutzko C, Guo Y, Wang X, Hill CK, Kanel GC, DeLeve LD (2009) Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology 137:704–712CrossRefGoogle Scholar
  5. 5.
    Levine P, McDaniel K, Francis H, Kennedy L, Alpini G, Meng F (2014) Molecular mechanisms of stem cell therapy in alcoholic liver disease. Dig Liver Dis 46:391–397CrossRefGoogle Scholar
  6. 6.
    Schmelzle M, Duhme C, Junger W, Salhanick SD, Chen Y, Wu Y, Toxavidis V, Csizmadia E, Han L, Bian S, Fürst G, Nowak M, Karp SJ, Knoefel WT, Schulte am Esch J, Robson SC (2012) CD39 modulates hematopoietic stem cell recruitment and promotes liver regeneration in mice and humans after partial hepatectomy. Ann Surg 257:693–701CrossRefGoogle Scholar
  7. 7.
    Schulte am Esch J, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, Burchardt ER, Feifel N, Stoldt V, Stockschläder M, Stoecklein N, Tustas RY, Eisenberger CF, Peiper M, Häussinger D, Hosch SB (2005) Portal application of autologous CD133+ bone marrow derived stem cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 2:463–470CrossRefGoogle Scholar
  8. 8.
    Fürst G, Schulte am Esch J, Poll LW, Hosch SB, Fritz B, Klein M, Godehardt E, Krieg A, Wecker B, Stoldt V, Stockschläder M, Eisenberger CF, Mödder U, Knoefel WT (2007) Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology 243:171–179CrossRefGoogle Scholar
  9. 9.
    Schulte am Esch J, Schmelzle M, Fürst G, Robson SC, Krieg A, Duhme C, Tustas RY, Alexander A, Klein HM, Topp SA, Bode JG, Häussinger D, Eisenberger CF, Knoefel WT (2012) Infusion of CD133+ bone marrow-derived stem cells after selective portal vein embolization enhances hepatic reserves after extended right hepatectomy. Ann Surg 255:79–85CrossRefGoogle Scholar
  10. 10.
    Schmelzle M, Splith K, Andersen LW, Kornek M, Schuppan D, Jones-Bamman C, Nowak M, Toxavidis V, Salhanick SD, Han L, Schulte am Esch J, Jonas S, Donnino MW, Robson SC (2013) Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury. Transplantation 95:63–69CrossRefGoogle Scholar
  11. 11.
    Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci 124:423–441CrossRefGoogle Scholar
  12. 12.
    Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27CrossRefGoogle Scholar
  13. 13.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265CrossRefGoogle Scholar
  14. 14.
    Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430CrossRefGoogle Scholar
  15. 15.
    Crumm S, Cofan M, Juskeviciute E, Hoek JB (2008) Adenine nucleotide changes in the remnant liver: an early signal for regeneration after partial hepatectomy. Hepatology 48:898–908CrossRefGoogle Scholar
  16. 16.
    Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I, Azoulay D, Duclos-Vallée JC, Castaing D, Samuel D, Hernandez-Garcia A, Awad SS, Combettes L, Thevananther S, Tordjmann T (2010) ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52:54–62CrossRefGoogle Scholar
  17. 17.
    Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC (2008) CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol 142:627–637CrossRefGoogle Scholar
  18. 18.
    Kornek M, Popov Y, Libermann TA, Afdhal NH, Schuppan D (2011) Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells. Hepatology 53:230–242CrossRefGoogle Scholar
  19. 19.
    Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30:1985–1998CrossRefGoogle Scholar
  20. 20.
    Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C, Camussi G (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14:1605–1618CrossRefGoogle Scholar
  21. 21.
    Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803.  https://doi.org/10.1371/journal.pone.0011803 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, Loufrani L, Grimaud L, Lambry JC, Charue D, Kiger L, Renard JM, Larroque C, Le Clésiau H, Tedgui A, Bruneval P, Barja-Fidalgo C, Alexandrou A, Tharaux PL, Boulanger CM, Blanc-Brude OP (2015) Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasco-occlusions in sickle cell disease. Blood 125:3805–3814CrossRefGoogle Scholar
  23. 23.
    Das S, Halushka MK (2015) Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 24:199–206CrossRefGoogle Scholar
  24. 24.
    Duchez AC, Boudreau LH, Naika GS, Bollinger J, Belleannée C, Cloutier N, Laffont B, Mendoza-Villarroel RE, Lévesque T, Rollet-Labelle E, Rousseau M, Allaeys I, Tremblay JJ, Poubelle PE, Lambeau G, Pouliot M, Provost P, Soulet D, Gelb MH, Boilard E (2015) Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 112:E3564–E3573CrossRefGoogle Scholar
  25. 25.
    Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 107:61–77CrossRefGoogle Scholar
  26. 26.
    Beninson LA, Fleshner M (2014) Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol 26:394–401CrossRefGoogle Scholar
  27. 27.
    Bissels U, Wild S, Tomiuk S, Hafner M, Scheel H, Mihailovic A, Choi YH, Tuschl T, Bosio A (2011) Combined characterization of microRNA and mRNA profiles delineates early differentiation pathways of CD133+ hematopoietic stem and progenitor cells. Stem Cells 29:847–857CrossRefGoogle Scholar
  28. 28.
    Chai S, Tong M, Ng KY, Kwan PS, Chan YP, Fung TM, Lee TKW, Wong N, Xie D, Yuan YF, Guan X-Y, Ma S (2014) Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133. Oncotarget 5:5725–5735PubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang B, Zhao J, Lei Z, Shen S, Li D, Shen GX, Zhang GM, Feng ZH (2009) MiR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep 10:180–185CrossRefGoogle Scholar
  30. 30.
    Kim K, Yang DK, Kim S, Kang H (2015) MiR-142-3p is a regulator of the TGFβ-mediated vascular smooth muscle cell phenotype. J Cell Biochem 116(10):2325–2333CrossRefGoogle Scholar
  31. 31.
    Fordham JB, Naqvi AR, Nares S (2015) Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 98(2):195–207CrossRefGoogle Scholar
  32. 32.
    Danger R, Pallier A, Giral M, Martínez-Llordella M, Lozano JJ, Degauque N, Sanchez-Fueyo A, Soulillou JP, Brouard S (2012) Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with renal transplant. J Am Soc Nephrol 23:597–606CrossRefGoogle Scholar
  33. 33.
    Makino K, Jinnin M, Kajihara I, Honda N, Sakai K, Masuguchi S, Fukushima S, Ihn H (2011) Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol 37:34–39CrossRefGoogle Scholar
  34. 34.
    Enjyoji K, Sévigny J, Lin Y, Frenette PS, Christie PD, Schulte am Esch J, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–101.7CrossRefGoogle Scholar
  35. 35.
    Aucher A, Rudnicka D, Davis DM (2013) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191:6250–6260CrossRefGoogle Scholar
  36. 36.
    van der Vlist EJ, Nolte-‘t Hoen ENM, Stoorvogel W, Arkesteijn GJA, Wauben MHM (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7:1311–1326CrossRefGoogle Scholar
  37. 37.
    Bale SS, Golberg I, Jindal R, McCarty WJ, Luitje M, Hedge M, Bhushan A, Usta OB, Yarmush ML (2014) Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods 21:413–422CrossRefGoogle Scholar
  38. 38.
    Greene AK, Wiener S, Puder M, Yoshida A, Shi B, Perez-Atayde AR, Efstathiou JA, Holmgren L, Adamis AP, Rupnick M, Folkman J, O'Reilly MS (2003) Endothelial-directed hepatic regeneration after partial hepatectomy. Ann Surg 237:530–535PubMedPubMedCentralGoogle Scholar
  39. 39.
    Sun X, Han L, Seth P, Bian S, Li L, Csizmadia E, Junger WG, Schmelzle M, Usheva A, Tapper EB, Baffy G, Sukhatme VP, Wu Y, Robson SC (2003) Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/Entpd1 null mice. Hepatology 57:205–216CrossRefGoogle Scholar
  40. 40.
    Lopatina T, Deregibus MC, Cantaluppi V, Camussi G (2012) Stem cell-derived microvesicles: a cell free therapy approach to the regenerative medicine. Curr Biotechnol 1:11–22CrossRefGoogle Scholar
  41. 41.
    Lee Y, Andaloussi SE, Wood MJA (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134CrossRefGoogle Scholar
  42. 42.
    Leung AKL, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38CrossRefGoogle Scholar
  43. 43.
    Detzer A, Engel C, Wünsche W, Sczakiel G (2011) Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Res 39:2727–2741CrossRefGoogle Scholar
  44. 44.
    Asirvatham AJ, Magner WJ, Tomasi TB (2009) MiRNA regulation of cytokine genes. Cytokine 45:58–69CrossRefGoogle Scholar
  45. 45.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86CrossRefGoogle Scholar
  46. 46.
    Xu S, Wei J, Wang F, Kong LY, Ling XY, Nduom E, Gabrusiewicz K, Doucette T, Yang Y, Yaghi NK, Fajt V, Levine JM, Qiao W, Li XG, Lang FF, Rao G, Fuller GN, Calin GA, Heimberger AB (2014) Effect of miR-142-3p on the macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst 106(8):dju162CrossRefGoogle Scholar
  47. 47.
    Chakraborty JB, Oakley F, Walsh MJ (2012) Mechanisms and biomarkers of apoptosis in liver disease and fibrosis. Int J Hepatol 2012:648915Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Stephanie Kuhn
    • 1
  • Katrin Splith
    • 2
  • Cindy Ballschuh
    • 3
  • Linda Feldbrügge
    • 2
  • Felix Krenzien
    • 2
  • Georgi Atanasov
    • 2
  • Christian Benzing
    • 2
  • Hans-Michael Hau
    • 4
  • Cornelius Engelmann
    • 5
  • Thomas Berg
    • 5
  • Jan Schulte am Esch
    • 6
  • Johann Pratschke
    • 2
  • Simon C. Robson
    • 7
  • Moritz Schmelzle
    • 2
    Email author
  1. 1.Department of Environmental ImmunologyHelmholtz Centre for Environmental Research GmbH – UFZLeipzigGermany
  2. 2.Department of Surgery, Campus Virchow-KlinikumCharité – Universitätsmedizin BerlinBerlinGermany
  3. 3.Department of GMP Cell and Gene TherapyFraunhofer Institute for Cell Therapy and Immunology – IZILeipzigGermany
  4. 4.Department of Visceral, Transplant, Thoracic, and Vascular SurgeryUniversity Hospital LeipzigLeipzigGermany
  5. 5.Department of Medicine, Division of HepatologyUniversity Hospital of LeipzigLeipzigGermany
  6. 6.Department of General- and Visceral SurgeryEvangelical Hospital BielefeldBielefeldGermany
  7. 7.The Transplant Institute and Division of Gastroenterology, Beth Israel Deaconess Medical CenterHarvard UniversityBostonUSA

Personalised recommendations