Purinergic Signalling

, Volume 14, Issue 4, pp 395–408 | Cite as

Adenosine enhances cisplatin sensitivity in human ovarian cancer cells

  • Parichat Sureechatchaiyan
  • Alexandra Hamacher
  • Nicole Brockmann
  • Bjoern Stork
  • Matthias U. KassackEmail author
Original Article


Ovarian cancer is the deadliest gynecologic cancer due to lack of early effective diagnosis and development of resistance to platinum-based chemotherapy. Several studies reported that adenosine concentrations are higher in tumor microenvironment than in non-tumor tissue. This finding inspired us to study the role of adenosine in ovarian cancer cells and to investigate if adenosine pathways offer new treatment options urgently needed to prevent or overcome chemoresistance. The ovarian cancer cell lines HEY, A2780, and its cisplatin-resistant subline A2780CisR were used in this study. Expression and functional activity of adenosine receptors were investigated by RT-PCR, Western blotting, and cAMP assay. A1 and A2B adenosine receptors were expressed and functionally active in all three cell lines. Adenosine showed moderate cytotoxicity (MTT-IC50 values were between 700 and 900 μM) and induced apoptosis in a concentration-dependent manner by increasing levels of sub-G1 and cleaved PARP. Apoptosis was diminished by QVD-OPh, confirming caspase-dependent induction of apoptosis. Forty-eight hours pre-incubation of adenosine prior to cisplatin significantly enhanced cisplatin-induced cytotoxicity in a synergistic manner and increased apoptosis. SLV320 or PSB603, selective A1 and A2B antagonists, was not able to inhibit adenosine-induced increase in cisplatin cytotoxicity or apoptosis whereas dipyridamole, a nucleoside transporter inhibitor, completely abrogated both effects. Mechanistically, adenosine increased pAMPK and reduced pS6K which was prevented by dipyridamole. In conclusion, application of adenosine prior to cisplatin could be a new therapeutic option to increase the potency of cisplatin in a synergistic manner and thus overcome platinum resistance in ovarian cancer.


Adenosine Ovarian cancer Cisplatin Adenosine receptors Nucleoside transporter Dipyridamole 



This study was supported by the Bundesministerium für Forschung (BMBF, Germany, Grant: BMBF-16GW0108). We acknowledge funding by the DFG for the Thermofisher Arrayscan XTI (Grant: INST 208/690-1 FUGG).

Compliance with ethical standards

Conflicts of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with participants or animals performed by any of the authors.

Supplementary material

11302_2018_9622_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 35 kb)


  1. 1.
    Coward JI, Middleton K, Murphy F (2016) New perspectives on targeted therapy in ovarian cancer. Int J Womens Health 7:189–203Google Scholar
  2. 2.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C (2013;24 Suppl 6) Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol:vi24–vi32Google Scholar
  4. 4.
    Foley OW, Rauh-Hain JA, Carmen MG (2013) Recurrent epithelial ovarian cancer: an update on treatment. Oncology (Williston Park) 27(4):288–294 298Google Scholar
  5. 5.
    Mantia-Smaldone GM, Edwards RP, Vlad AM (2011) Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res 3:25–38PubMedGoogle Scholar
  6. 6.
    Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279PubMedCrossRefGoogle Scholar
  7. 7.
    Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883PubMedCrossRefGoogle Scholar
  8. 8.
    Hijaz M, Chhina J, Mert I, Taylor M, Dar S, Al-Wahab Z et al (2016) Preclinical evaluation of olaparib and metformin combination in BRCA1 wild type ovarian cancer. Gynecol Oncol 142(2):323–331PubMedCrossRefGoogle Scholar
  9. 9.
    Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T et al (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21(19):4257–4261PubMedCrossRefGoogle Scholar
  10. 10.
    Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36(3):293–303PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9(2):145–165PubMedCrossRefGoogle Scholar
  12. 12.
    Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605PubMedGoogle Scholar
  13. 13.
    US Food & Drug Administration (USFDA). Adenosine. Accessed 27 July 2017
  14. 14.
    Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808(5):1400–1412PubMedCrossRefGoogle Scholar
  15. 15.
    Antonioli L, Blandizzi C, Pacher P, Hasko G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13(12):842–857PubMedCrossRefGoogle Scholar
  16. 16.
    Dasgupta B, Chhipa RR (2016) Evolving lessons on the complex role of AMPK in normal physiology and cancer. Trends Pharmacol Sci 37(3):192–206PubMedCrossRefGoogle Scholar
  17. 17.
    Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318PubMedCrossRefGoogle Scholar
  18. 18.
    Watanabe R, Wei L, Huang J (2011) mTOR signaling, function, novel inhibitors, and therapeutic targets. J Nucl Med 52(4):497–500PubMedGoogle Scholar
  19. 19.
    Liu H, Scholz C, Zang C, Schefe JH, Habbel P, Regierer AC, Schulz CO, Possinger K, Eucker J (2012) Metformin and the mTOR inhibitor everolimus (RAD001) sensitize breast cancer cells to the cytotoxic effect of chemotherapeutic drugs in vitro. Anticancer Res 32(5):1627–1637PubMedGoogle Scholar
  20. 20.
    William WN, Kim JS, Liu DD, Solis L, Behrens C, Lee JJ, Lippman SM, Kim ES, Hong WK, Wistuba II, Lee HY (2012) The impact of phosphorylated AMP-activated protein kinase expression on lung cancer survival. Ann Oncol 23(1):78–85PubMedCrossRefGoogle Scholar
  21. 21.
    Zadra G, Batista JL, Loda M (2015) Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res 13(7):1059–1072PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Liang J, Mills GB (2013) AMPK: a contextual oncogene or tumor suppressor? Cancer Res 73(10):2929–2935PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Koumenis C, Hammond E, Giaccia A (2014) Tumor microenvironment and cellular stress: signaling, metabolism, imaging, and therapeutic targets. Preface. Adv Exp Med Biol 772:v–viiiPubMedGoogle Scholar
  24. 24.
    Kim H, Hwang J, Yun H et al (2008) Inhibition of AMPK-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53. J Biol Chem 283:3731–3742PubMedCrossRefGoogle Scholar
  25. 25.
    Engelke LH, Hamacher A, Proksch P, Kassack MU (2016) Ellagic acid and resveratrol prevent the development of cisplatin resistance in the epithelial ovarian cancer cell line A2780. J Cancer 7(4):353–363PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Stenzel K, Hamacher A, Hansen FK, Gertzen CGW, Senger J, Marquardt V, Marek L, Marek M, Romier C, Remke M, Jung M, Gohlke H, Kassack MU, Kurz T (2017) Alkoxyurean-based histone deacetylase inhibitors increase cisplatin potency in chemoresistant cancer cell lines. J Med Chem 60(13):5334–5348PubMedCrossRefGoogle Scholar
  27. 27.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kalk P, Eggert B, Relle K, Godes M, Heiden S, Sharkovska Y, Fischer Y, Ziegler D, Bielenberg GW, Hocher B (2007) The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br J Pharmacol 151(7):1025–1032PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681PubMedCrossRefGoogle Scholar
  31. 31.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Shirali S, Aghaei M, Shabani M, Fathi M, Sohrabi M, Moeinifard M (2013) Adenosine induces cell cycle arrest and apoptosis via cyclinD1/Cdk4 and Bcl-2/Bax pathways in human ovarian cancer cell line OVCAR-3. Tumour Biol 34(2):1085–1095PubMedCrossRefGoogle Scholar
  33. 33.
    Hajiahmadi S, Panjehpour M, Aghaei M, Mousavi S (2015a) Molecular expression of adenosine receptors in OVCAR-3, Caov-4 and SKOV-3 human ovarian cancer cell lines. Res Pharm Sci 10(1):43–51PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hajiahmadi S, Panjehpour M, Aghaei M, Shabani M (2015b) Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol 93(4):321–329PubMedCrossRefGoogle Scholar
  35. 35.
    Mello Pde A, Filippi-Chiela EC, Nascimento J, Beckenkamp A, Santana DB, Kipper F et al (2014) Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Mol Biol Cell 25(19):2905–2918PubMedCrossRefGoogle Scholar
  36. 36.
    Mello Pde A, Coutinho-Silva R, Savio LEB (2017) Multifaceted effects of extracellular adenosine triphosphate and adenosine in the tumor–host interaction and therapeutic perspectives. Frontier Immunol 8 article 1526Google Scholar
  37. 37.
    Wei Q, Costanzi S, Balasubramanian R, Gao ZG, Jacobson KA (2013) A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal 9(2):271–280PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mirza A, Basso A, Black S, Malkowski M, Kwee L, Pachter JA et al (2005) RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther 4(12):1355–1360PubMedCrossRefGoogle Scholar
  39. 39.
    Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X, Franklin WA, Bridges JP, Schaack JB, Colgan SP, White CW (2009) Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc Natl Acad Sci 106(26):10684–10689PubMedCrossRefGoogle Scholar
  40. 40.
    Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci 103(35):13132–13137PubMedCrossRefGoogle Scholar
  41. 41.
    Montalban Del Barrio I, Penski C, Schlahsa L, Stein RG, Diessner J, Wockel A et al (2016) Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages—a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer 4:49PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Domcke S, Sinha R, Levine DA, Sander C, Schultz N (2013) Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 4:2126PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gershenson DM (2016) Low-grade serous carcinoma of the ovary or peritoneum. Ann Oncol 27(suppl 1):i45–i49PubMedCrossRefGoogle Scholar
  44. 44.
    Fernández ML, DiMattia GE, Dawson A, Bamford S, Anderson S, Hennessy BT, Anglesio MS, Shepherd TG, Salamanca C, Hoenisch J, Tinker A, Huntsman DG, Carey MS (2016) Differences in MEK inhibitor efficacy in molecularly characterized low-grade serous ovarian cancer cell lines. Am J Cancer Res 6(10):2235–2251PubMedPubMedCentralGoogle Scholar
  45. 45.
    Virtanen SS, Kukkonen-Macchi A, Vainio M, Elima K, Harkonen PL, Jalkanen S, Yegutkin GG (2014) Adenosine inhibits tumor cell invasion via receptor-independent mechanisms. Mol Cancer Res 12(12):1863–1874PubMedCrossRefGoogle Scholar
  46. 46.
    Yang D, Yaguchi T, Nakano T, Nishizaki T (2011) Adenosine activates AMPK to phosphorylate Bcl-XL responsible for mitochondrial damage and DIABLO release in HuH-7 cells. Cell Physiol Biochem 27(1):71–78PubMedCrossRefGoogle Scholar
  47. 47.
    Wu LF, Li GP, Feng JL, Pu ZJ (2006) Molecular mechanisms of adenosine-induced apoptosis in human HepG2 cells. Acta Pharmacol Sin 27(4):477–484PubMedCrossRefGoogle Scholar
  48. 48.
    Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T (2004) Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol 67(10):2005–2011PubMedCrossRefGoogle Scholar
  49. 49.
    Tsuchiya A, Nishizaki T (2015) Anticancer effect of adenosine on gastric cancer via diverse signaling pathways. World J Gastroenterol 21(39):10931–10935PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mihaylova MM, Shaw RJ (2011) The AMPK signaling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chagoya de Sánchez V, Brunner A, Pina E (1972) In vivo modification of the energy charge in the liver cell. Biochem Biophys Res Commun 46(3):1441–1445PubMedCrossRefGoogle Scholar
  53. 53.
    Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332(6036):1433–1435PubMedCrossRefGoogle Scholar
  54. 54.
    Tandon P, Gallo CA, Khatri S, Barger JF, Yepiskoposyan H, Plas DR (2011) Requirement for ribosomal protein S6 kinase 1 to mediate glycolysis and apoptosis resistance induced by Pten deficiency. Proc Natl Acad Sci U S A 108(6):2361–2365PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Pharmaceutical and Medicinal ChemistryHeinrich-Heine UniversityDuesseldorfGermany
  2. 2.Institute of Molecular MedicineHeinrich-Heine UniversityDuesseldorfGermany

Personalised recommendations