Tree Genetics & Genomes

, 15:53 | Cite as

Transcriptomic analysis of pollen-pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility

  • Eva M. Gómez
  • Matteo Buti
  • Daniel J. Sargent
  • Federico Dicenta
  • Encarnación OrtegaEmail author
Original Article
Part of the following topical collections:
  1. Gene Expression


The cultivated almond exhibits self-incompatibility of the gametophytic type regulated by the S-locus, which is expressed in both the pistil (S-RNase) and pollen (SFB protein). Although almond cultivars are mostly self-incompatible, some cultivars have been found to be self-compatible. For a long time, self-compatibility was unequivocally associated only with the presence of the Sf haplotype. However, recent studies reported the existence of self-incompatible almond cultivars carrying the Sf genotype. This finding suggests the involvement of new, hitherto undiscovered components involved in the almond self-incompatibility system. The aim of this study was to clarify the transcription pattern of the S-genes and to look for additional components of the gametophytic self-incompatibility system in almond. Transcriptome analysis of un-pollinated pistils and incompatible and compatible pollinations of self-compatible and self-incompatible almonds carrying the Sf haplotype was performed using high-throughput RNA sequencing technologies. Among the unigenes, 1357 were shown to be differentially expressed, and gene ontology annotation revealed that they are mostly involved in metabolic processes and binding molecular functions. The expression trend of fourteen representative genes, some of which are putatively involved in the self-(in)compatible response, was confirmed by RT-qPCR. This transcriptomic analysis provides candidate genes for almond components of gametophytic self-incompatibility and could be used as reference for subsequent comparative transcriptomic analyses of pollen and pistil.


Almond Self-incompatibility Gene expression Pollen-pistil interaction RNA-Seq qPCR 



E.M. Gómez acknowledges the receipt of a FPI scholarship and a short stay scholarship both from MINECO.

Data archiving statement

RNA-Seq reads obtained have been deposited in the ArrayExpress database at EMBL-EBI ( under accession number E-MTAB-6164.

Authors’ contributions

EM Gómez designed RNA-Seq and RT-qPCR experiments, performed the experiments, analyzed the data and wrote the manuscript. M Buti analyzed the data and wrote the manuscript. DJ Sargent assisted in design of RNA-Seq and RT-qPCR experiments, and critically revised the contents and the English of the manuscript. F Dicenta coordinated the project. E Ortega conceived and coordinated the project, was involved in interpretation of data and wrote the manuscript.

Funding information

This work has been financially supported by the projects “Mejora Genética del Almendro” and “Breeding stone fruit species assisted by molecular tools” funded by “Ministerio de Economía y Competitividad” (MINECO) (grant AGL2013-48577-C2-1-R) and “Fundación Séneca” (grant 19879/GERM/15), respectively.

Supplementary material

11295_2019_1360_MOESM1_ESM.xlsx (15 kb)
ESM 1 (XLSX 14 kb)
11295_2019_1360_MOESM2_ESM.pdf (203 kb)
ESM 2 (PDF 203 kb)
11295_2019_1360_MOESM3_ESM.pdf (354 kb)
ESM 3 (PDF 354 kb)
11295_2019_1360_MOESM4_ESM.pdf (89 kb)
ESM 4 (PDF 89 kb)
11295_2019_1360_MOESM5_ESM.xlsx (378 kb)
ESM 5 (XLSX 378 kb)
11295_2019_1360_MOESM6_ESM.pdf (910 kb)
ESM 6 (PDF 910 kb)


  1. Alkio M, Jonas U, Declerq M, Van Nocker S, Knoche M (2014) Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. Hortic Res 1:11CrossRefGoogle Scholar
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefGoogle Scholar
  3. Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169CrossRefGoogle Scholar
  4. Andrews S (2010) FastQC: a quality control tool for high through put sequence data. Available online at:
  5. Ariani A, Di Baccio D, Romeo S, Lombardi L, Andreucci A et al (2015) RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc. PLoS One 10(2):e0117571. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwigth SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver R, Lewis S, Matese JE, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification if biology. Nat Genet 25:25–29CrossRefGoogle Scholar
  7. Badenes ML, Parfitt DE (1995) Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor Appl Genet 90:1035–1041CrossRefGoogle Scholar
  8. Bošković R, Tobutt KR, Duval H, Batlle I, Dicenta F, Vargas FJ (1999) A stylar ribonuclease assay to detect self-compatible seedlings in almond progenies. Theor Appl Genet 99:800–810CrossRefGoogle Scholar
  9. Bošković RI, Tobutt KR, Ortega E, Sutherland BG, Godini A (2007) Self-(in)compatibility of the almonds P. dulcis and P. webbii in Apulia: detection and cloning of ‘wild type S f’ and alleles encoding inactive S-RNases. Mol Gen Genet 278:665–676CrossRefGoogle Scholar
  10. Buti M, Moretto M, Barghini E, Mascagni F, Natali L, Brilli M, Lomsadze A, Sonego P, Giongo L, Alonge M, Velasco R, Varotto C, Šurbanovski N, Borodovsky M, Ward JA, Engelen K, Cavallini A, Cestaro A, Sargent DJ (2018) The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience 1:1–14Google Scholar
  11. Cachi AM, Wünsch A (2011) Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.). J Exp Bot 62:1847–1856CrossRefGoogle Scholar
  12. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Wang X (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963CrossRefGoogle Scholar
  13. Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20CrossRefGoogle Scholar
  14. Chang Z, Chen Z, Yan W, Xie G, Lu J, Wang N, Lu Q, Yao N, Yang G, Xia J, Tang X (2016) An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. Plant Sci 253:21–30CrossRefGoogle Scholar
  15. Chen Y, Mao Y, Liu H, Yu F, Li S, Yin T (2014) Transcriptome differentially expressed genes relevant to variegation in peach flowers. PLoS One 9:e90842CrossRefGoogle Scholar
  16. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  17. Elleman CJ, Dickinson HG (1999) Commonalities between pollen/stigma and host/pathogen interactions: calcium accumulation during stigmatic penetration by Brassica oleracea pollen tubes. Sex Plant Reprod 12:194–202CrossRefGoogle Scholar
  18. Felipe AJ (1977) Stadi fenologico del mandorlo. Procedings of 3erd GREMPA colloquium, 3–7 October 1977, Valenzano, Bari, Italy. Edizioni Quadrifoglio, Bari. pp101–103Google Scholar
  19. Feng J, Chen X, Wu Y, Liu W, Liang Q, Zhang L (2006) Detection and transcript expression of S-RNase gene associated with self-incompatibility in apricot (Prunus armeniaca L.). Mol Biol Rep 33:215–221CrossRefGoogle Scholar
  20. Fernández i Martí A, Hanada T, Alonso JM, Yamane H, Tao R, Socias i Company R (2010) The almond S f haplotype shows a double expression despite its comprehensive genetic identity. Sci Hortic 125:685–691CrossRefGoogle Scholar
  21. Fernández i Martí A, Howad W, Tao R, Alonso Segura JM, Arús P, Socias i Company R (2011) Identification of quantitative trait loci associated with self-compatibility in a Prunus species. Tree Genet Genomes 7:629–639CrossRefGoogle Scholar
  22. Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT, Cutler AJ (2011) The Arabidopsis C2H2 zinc finger indeterminate domain1/enhydrous promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794CrossRefGoogle Scholar
  23. Foote HCC, Ride JP, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FCH (1994) Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. P Natl Acad Sci USA 91:2265–2269CrossRefGoogle Scholar
  24. Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525CrossRefGoogle Scholar
  25. Gao L, Wang YT, Li Z, Zhang Z, Ye JL, Li GH (2016) Gene expression changes during the gummosis development of peach shoots in response to Lasiodiplodia theobromae infection using RNA-Seq. Front Physiol 7:170CrossRefGoogle Scholar
  26. Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732CrossRefGoogle Scholar
  27. Godini A (1979) Ipotesi sulla comparsa dell’autocompatibilitá nel mandorlo. Scienzia e Tecnica Agraria 19:3–10Google Scholar
  28. Gómez EM, Dicenta F, Martínez-García PJ, Ortega E (2015) iTRAQ-based quantitative proteomic analysis of pistils and anthers from self-incompatible and self-compatible almonds with the S f haplotype. Mol Breed 35:120CrossRefGoogle Scholar
  29. Gupta SK, Rai AK, Kanwar AA, Sharma TR (2012) Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One 7(8):e42578CrossRefGoogle Scholar
  30. Habu T, Tao R (2014) Transcriptome analysis of self- and cross-pollinated pistils of Japanese apricot (Prunus mume Sieb. et Zucc.). J Japan Soc Hort Sci 83:95–107CrossRefGoogle Scholar
  31. Hanada T, Fakuta K, Yamane H, Esumi T, Tao R, Gradziel T, Dandekar AM, Fernández i Martí A, Alonso JM, Socias i Company R (2009) Cloning and characterization of a self-compatible S f haplotype in almond [Prunus dulcis (Mill.) D.A. Webb. syn. P. amygdalus Batsch] to resolve previous confusion in its S f -RNase sequence. HortScience 55:609–613CrossRefGoogle Scholar
  32. Harikrishna K, Rachanee JB, Stephen BM, Charles SG (1996) An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Pant Mol Biol 30:899–911CrossRefGoogle Scholar
  33. Hodgkin T, Lyon GD, Dickinson HG (1988) Recognition in flowering plants: a comparison of the Brassica self-incompatibility system and plant pathogen interactions. New Phytol 110:557–569CrossRefGoogle Scholar
  34. Iaria D, Chiappetta A, Muzzalupo I (2016) De novo transcriptome sequencing of Olea europaea L. to identify genes involved in the development of the pollen tube. Sci World J 17:359Google Scholar
  35. Kakui H, Kato M, Ushijima K, Kitaguchi M, Kato S, Sassa H (2011) Sequence divergence and loss-of-function phenotypes of S locus F-box brothers genes are consistent with non-self-recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). Plant J 68:1028–1038CrossRefGoogle Scholar
  36. Kang J, Park J, Choi H, Burla B, KretzschmarT, Lee Y, Martinoia E (2011) Plant ABC transporters. The Arabidopsis book e0153. doi: CrossRefGoogle Scholar
  37. Kodad O, Sánchez A, Saibo N, Oliveira M, Socías i Company R (2008) Identification and characterization of new S-alleles associated with self-incompatibility in almond. Plant Breed 127:632–638CrossRefGoogle Scholar
  38. Konrad KR, Wudick MM, Feijo JA (2011) Calcium regulation of tip growth: new genes for old mechanisms. Curr Opin Plant Biol 14:721–730CrossRefGoogle Scholar
  39. Łabaj PP, Leparc GG, Linggi BE, Markillie LM, Wiley HS, Kreil DP (2011) Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics 27:i383–i391CrossRefGoogle Scholar
  40. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  41. Leung DWM (1992) Involvement of plant chitinase in sexual reproduction of higher plants. Phytochemistry 31:1899–1900CrossRefGoogle Scholar
  42. Li H, Yang WC (2016) RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59:867–877CrossRefGoogle Scholar
  43. Liu B, Morse D, Cappadocia M (2009) Compatible pollinations in Solanum chacoense decrease both S-RNase and S-RNase mRNA. PLoS One 4(6):e5774CrossRefGoogle Scholar
  44. Martínez-García PJ, Mañas F, López P, Dicenta F, Ortega E (2011) Molecular and phenotypic characterization of the S-locus and determination of flowering time in new ‘Marcona’ and ‘Desmayo Largueta’-type almond (Prunus dulcis) selections. Euphytica 177:67–78CrossRefGoogle Scholar
  45. Martínez-García PJ, Gómez EM, Casado-Vela J, Elortza F, Dicenta F, Ortega E (2015) Differential protein expression in compatible and incompatible pollen-pistil interactions in almond [Prunus dulcis (Miller) D.A: Webb] by 2D-DIGE and HPLC-MS/MS. J Hortic Sci Biotechnol 90:71–77CrossRefGoogle Scholar
  46. Martínez-Gómez P, Sánchez-Pérez R, Rubio M (2012) Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era. Omics 16:268–283CrossRefGoogle Scholar
  47. McClure BA, Gray JE, Anderson MA, Clarke AE (1990) Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347:757–760CrossRefGoogle Scholar
  48. McClure BA, Cruz-García F, Beecher BS, Sulaman W (2000) Factors affecting inter- and intra-specific pollen rejection in Nicotiana. Ann Bot 85:113–123CrossRefGoogle Scholar
  49. Michard E, Alves F, Feijó JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622CrossRefGoogle Scholar
  50. Minamikawa MF, Koyano R, Kikuchi S, Koba T, Sassa H (2014) Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica). PLoS One 9:e97642CrossRefGoogle Scholar
  51. Mousavi S, Alisoltani A, Shiran B, Fallahi H, Imani A, Houshmand S (2014) De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress. PLoS One 10:e104541CrossRefGoogle Scholar
  52. Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519CrossRefGoogle Scholar
  53. Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2:673–684PubMedPubMedCentralGoogle Scholar
  54. Ortega E, Dicenta F (2003) Inheritance of self-compatibility in almond: breeding strategies to assure self-compatibility in the progeny. Theor Appl Genet 106:904–911CrossRefGoogle Scholar
  55. Ortega E, Dicenta F (2004) Suitability of four different methods to identify self-compatible seedlings in an almond breeding programme. J Hortic Sci Biotechnol 79:747–753CrossRefGoogle Scholar
  56. Ortega E, Egea J, Cánovas JA, Dicenta F (2002) Pollen tube dynamics following half- and fully-compatible pollinations in self-compatible almond cultivars. Sex Plant Reprod 15:47–51. CrossRefGoogle Scholar
  57. Ortega E, Martínez-Gómez PJ, Dicenta F, Egea J (2010) Disruption of endosperm development: an inbreeding effect in almond (Prunus dulcis). Sex Plant Reprod 23:135–140CrossRefGoogle Scholar
  58. Perikles S (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440CrossRefGoogle Scholar
  59. Qin X, Liu B, Soulard J, Morse D, Cappadocia M (2006) Style-by-style analysis of two sporadic self-compatible Solanum chacoense lines supports a primary role for S-RNases in determining pollen rejection thresholds. J Exp Bot 57:2001–2013CrossRefGoogle Scholar
  60. Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang h MB, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154CrossRefGoogle Scholar
  61. Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A (2002) Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53:2333–2339CrossRefGoogle Scholar
  62. Remy P (1953) Contribution a l’étude du pollen des arbres fruitiers a noyau, genre Prunus. Ann Amelior Plant 3:351–388Google Scholar
  63. Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P (2015a) Gene expression analysis of Plum pox virus (sharka) susceptibility/resistance in apricot (Prunus armeniaca L.). PLoS One 10(12):e0144670CrossRefGoogle Scholar
  64. Rubio M, Rodríguez-Moreno L, Ballester AR, Castro M, Bonghi C, Martínez-Gómez P (2015b) Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol Plant Pathol 16:164–176CrossRefGoogle Scholar
  65. Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916CrossRefGoogle Scholar
  66. Takei N, Nakazaki T, Tsuchiya T, Kowyama Y, Ikehashi H (2000) Isolation and expression of a pistil-specific chitinase gene in rice (Oryza sativa L.). Breed Sci 50:225–228CrossRefGoogle Scholar
  67. Tao R, Iezzoni AF (2010) The S-RNase based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Sci Hortic 124:423–433CrossRefGoogle Scholar
  68. Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71CrossRefGoogle Scholar
  69. Undergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar
  70. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781CrossRefGoogle Scholar
  71. Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori MT, Schmutz J (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:225CrossRefGoogle Scholar
  72. Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, Cheng J, Han Y (2013) Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol 83:365–377CrossRefGoogle Scholar
  73. Watari A, Hanada T, Yamane H, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Beppu K, Kataoka I (2007) A low transcriptional level of S e -RNase in the S e-haplotype confers self-compatibility in Japanese plum. J Am Soc Hortic Sci 132:396–406CrossRefGoogle Scholar
  74. Wei HR, Chen X, Zong XJ, Shu HR, Gao DS, Li QZ (2015) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS One 10:e0121164CrossRefGoogle Scholar
  75. Wemmer T, Kaufmann H, Kirch H-H, Schneider K, Lottspeich F, Thompson RD (1994) The most abundant soluble basic protein of the stylar transmitting tract in potato (Solanum tuberosum L.) is an endochitinase. Planta 194:264–273CrossRefGoogle Scholar
  76. Wengier D, Valsecchi I, Cabanas ML, Tang WK, McCormick S, Muschietti J (2003) The receptor kinases LEPRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc Natl Acad Sci U S A 100:6860–6865CrossRefGoogle Scholar
  77. Wingett SW, Andrews S. FastQ Screen (2018) A tool for multi-genome mapping and quality control. F1000Res. 2018 Aug 24 [revised 2018 Jan 1]; 7:1338. doi: eCollectionCrossRefGoogle Scholar
  78. Zhang YJ, Zhao ZH, Xue YB (2009) Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 60:21–42CrossRefGoogle Scholar
  79. Zhang S, Ding F, He X, Luo C, Huang G, Hu Y (2015) Characterization of the ‘Xiangshui’ lemon transcriptome by the novo assembly to discover genes associated with self-incompatibility. Mol Gen Genomics 290:365–375CrossRefGoogle Scholar
  80. Zhang CC, Wang LY, Wei K, Wu LY, Li H-L, Zhang F, Hao Cheng H, Ni DJ (2016) Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 17:359. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhao P, Zhang L, Zhao L (2015) Dissection of the style’s response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species. BMC Plant Biol 15:119CrossRefGoogle Scholar
  82. Zuriaga E, Muñoz-Sanz JV, Molina L, Gisbert AD, Badenes ML, Romero C (2013) An S-locus independent pollen factor confers self-compatibility in ‘Katy’ apricot. PLoS One 8:e53947CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eva M. Gómez
    • 1
  • Matteo Buti
    • 2
    • 3
  • Daniel J. Sargent
    • 2
  • Federico Dicenta
    • 1
  • Encarnación Ortega
    • 1
    Email author
  1. 1.Plant Breeding DepartmentCEBAS-CSIC, Campus Universitario de EspinardoMurciaSpain
  2. 2.Department of Genomics and Biology of Fruit Crop, Fondazione Edmund Mach, Research and Innovation CentreSan Michele all’AdigeTrentoItaly
  3. 3.Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI)University of FlorenceFlorenceItaly

Personalised recommendations