Advertisement

Comparative transcriptomics-based selection of suitable reference genes for normalization of RT-qPCR experiments in drought-stressed leaves of three European Quercus species

  • Peter KotradeEmail author
  • Eva Maria Sehr
  • Elisabeth Wischnitzki
  • Wolfgang Brüggemann
Original Article
  • 74 Downloads
Part of the following topical collections:
  1. Gene Expression

Abstract

Reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) experiments were selected and evaluated for drought-stressed leaves of three European Quercus species (Q. ilex, Q. pubescens, and Q. robur). A drought experiment was conducted over the course of 2 years. In the first year, a comparative transcriptome analysis was conducted between control and drought-stressed plants in all three species. Based on this analysis, six genes which showed a low fold change and low individual variation of normalized expression values were selected as novel candidate reference genes. The six novel candidate genes were homologs of the serine/threonineprotein kinase At1g54610 (At1g54610), ATP synthase gamma chain (ATPC1), far-red elongated hypocotyl 3-like (FHY3), 50S ribosomal protein L13 (RPL13), serine/threonine-protein phosphatise PP1 (TOPP2), and splicing factor U2af small subunit B-like (U2AF35B). As a control, the two classical candidate reference genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and elongation factor 1 alpha (EF1a) were included. Cross-species primers were designed for all candidate reference genes. The reference genes were evaluated in samples from three dates in the second year of the drought experiment. Four different algorithms (Bestkeeper, the comparative Ct method, geNorm, and Normfinder) were utilized to analyze expression stability. The results of the algorithms were summarized, and the most stable genes and optimal number of reference genes were identified for every species. These results demonstrated that, in each species, at least four of the novel reference genes are more stably expressed than the classical reference genes and that two reference genes are the optimal number for each species. One novel reference gene, At1g54610, was found to be among the two most stable reference genes across all three species; the second most stable gene was found to be TOPP2 in Q. ilex, U2AF35B in Q. pubescens, and FHY3 in Q. robur. Reference genes are crucial to normalize qPCR data and to identify stress-responsive genes, e.g., in the context of a search for drought-tolerant Quercus genotypes able to withstand the predicted increase of drought events in large parts of Europe during climate change.

Keywords

RT-qPCR Reference genes RNA-Seq Drought stress Quercus Gene expression 

Notes

Data archiving statement

Assemblies were submitted to TSA (transcriptome shotgun assembly) database of NCBI (https://www.ncbi.nlm.nih.gov). The accession numbers are listed in Table S1. The complete data set from the RNA-Seq is accessible at NCBI under the reference SRP144916.

Funding information

This work was supported by the research-funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz” of the Hessian Ministry for Science and the Arts.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2019_1347_MOESM1_ESM.xlsx (28 kb)
ESM 1 (XLSX 27 kb)

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250PubMedCrossRefGoogle Scholar
  2. Bussotti F, Pollastrini M, Holland V, Brüggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113CrossRefGoogle Scholar
  3. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622PubMedCrossRefGoogle Scholar
  4. Cheng Y, Zhou W, El Sheery NI, Peters C, Li M, Wang X, Huang J (2011) Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. Plant J 66(5):781–795PubMedCrossRefGoogle Scholar
  5. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc, B 363(1491):557–572CrossRefGoogle Scholar
  6. Costa-Silva J, Domingues D, Lopes FM, Wei Z (2017) RNA-Seq differential expression analysis: An extended review and a software tool. PLOS ONE 12(12):e0190152PubMedPubMedCentralCrossRefGoogle Scholar
  7. De Spiegelaere W, Dern-Wieloch J, Weigel R, Schumacher V, Schorle H, Nettersheim D, Bergmann M, Brehm R, Kliesch S, Vandekerckhove L, Fink C (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One 10(3):e0122515PubMedPubMedCentralCrossRefGoogle Scholar
  8. Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59(2):351–366CrossRefGoogle Scholar
  9. Everaert C, Luypaert M, Maag JL, Cheng QX, Dinger ME, Hellemans J, Mestdagh P (2017) Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep 7(1):1559PubMedPubMedCentralCrossRefGoogle Scholar
  10. Früchtenicht E, Neumann L, Klein N, Bonal D, Brüggemann W (2018a) Response of Quercus robur and two potential climate change winners - Quercus pubescens and Quercus ilex - to two years summer drought in a semi-controlled competition study: I – tree water status. Environ Exp Bot 152:107–117CrossRefGoogle Scholar
  11. Früchtenicht E, Klein N, Brüggemann W (2018b) Response of Quercus robur and two potential climate change winners – Quercus pubescens and Quercus ilex – to two years summer drought in a semi-controlled competition study: II—photosynthetic efficiency. Environ Exp Bot 152:118–127CrossRefGoogle Scholar
  12. Galli V, Borowski JM, Perin EC, da Silva MR, Labonde J, dos Santos Pereira I et al (2015) Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 554(2):205–214PubMedCrossRefGoogle Scholar
  13. Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19(6):520–525PubMedCrossRefGoogle Scholar
  14. Georgii E, Jin M, Zhao J, Kanawati B, Schmitt-Kopplin P, Albert A, Winkler JB, Schäffner AR (2017) Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biol 17(1):120PubMedPubMedCentralCrossRefGoogle Scholar
  15. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29(7):644–652PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3(3):203–207CrossRefGoogle Scholar
  17. Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34(11):1181–1198PubMedCrossRefGoogle Scholar
  18. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19PubMedPubMedCentralCrossRefGoogle Scholar
  19. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284PubMedCrossRefGoogle Scholar
  20. Pachauri RK, Allen MR, Barros VR , Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O'Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner GK, Pörtner HO, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle JP (2014): Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri RK, Meyer LA (eds.) Climate change 2014: synthesis report. IPCC, Geneva, 151 ppGoogle Scholar
  21. Köble R, Seufert G (2001) Novel maps for forest tree species in Europe. Proceedings of the 8th european symposium on the physico-chemical behaviour of air pollutants 17–20Google Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874PubMedCrossRefGoogle Scholar
  23. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359PubMedPubMedCentralCrossRefGoogle Scholar
  24. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12(1):323CrossRefGoogle Scholar
  25. Liang P, Guo Y, Zhou X, Gao X (2014) Expression profiling in Bemisia tabaci under insecticide treatment: indicating the necessity for custom reference gene selection. PLoS One 9(1):e87514PubMedPubMedCentralCrossRefGoogle Scholar
  26. Magalhães AP, Verde N, Reis F, Martins I, Costa D, Lino-Neto T et al (2016) RNA-Seq and gene network analysis uncover activation of an ABA-dependent signalosome during the cork oak root response to drought. Front Plant Sci 6:1195PubMedPubMedCentralCrossRefGoogle Scholar
  27. Marum L, Miguel A, Ricardo CP, Miguel C (2012) Reference gene selection for quantitative real-time PCR normalization in Quercus suber. PLoS One 7(4):e35113PubMedPubMedCentralCrossRefGoogle Scholar
  28. McCarthy JD, Chen Y, Smyth KG (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297PubMedPubMedCentralCrossRefGoogle Scholar
  29. McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21(2):297–302PubMedCrossRefGoogle Scholar
  30. Mosley YYC, HogenEsch H (2017) Selection of a suitable reference gene for quantitative gene expression in mouse lymph nodes after vaccination. BMC Res Notes 10(1):689PubMedPubMedCentralCrossRefGoogle Scholar
  31. Nixon KC (2006) Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak forests. Springer, Berlin, pp 3–13CrossRefGoogle Scholar
  32. Pasini L, Bergonti M, Fracasso A, Marocco A, Amaducci S (2014) Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. J Plant Physiol 171(7):537–548PubMedCrossRefGoogle Scholar
  33. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu MN, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214PubMedCrossRefGoogle Scholar
  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45PubMedPubMedCentralCrossRefGoogle Scholar
  35. Pfaffl MW (2012) Quantification strategies in real-time polymerase chain reaction. In: Filion M (ed) Quantitative Real-time PCR in Applied Microbiology. Caister Academic Press, Norfolk, pp 53–61Google Scholar
  36. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515PubMedCrossRefGoogle Scholar
  37. Porth I, Koch M, Berenyi M, Burg A, Burg K (2005) Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Tree Physiol 25(10):1317–1329PubMedCrossRefGoogle Scholar
  38. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862PubMedCrossRefGoogle Scholar
  39. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25PubMedPubMedCentralCrossRefGoogle Scholar
  40. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140PubMedCrossRefGoogle Scholar
  41. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227PubMedCrossRefGoogle Scholar
  42. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7(1):33PubMedPubMedCentralCrossRefGoogle Scholar
  43. Spieß N, Oufir M, Matušíková I, Stierschneider M, Kopecky D, Homolka A, Burg K, Fluch S, Hausman JF, Wilhelm E (2012) Ecophysiological and transcriptomic responses of oak (Quercus robur) to long-term drought exposure and rewatering. Environ Exp Bot 77:117–126CrossRefGoogle Scholar
  44. Steyaert W, Callens S, Coucke P, Dermaut B, Hemelsoet D, Terryn W, Poppe B (2018) Future perspectives of genome-scale sequencing. Acta Clin Belg 73(1):7–10PubMedCrossRefGoogle Scholar
  45. Torre S, Tattini M, Brunetti C, Fineschi S, Fini A, Ferrini F, Sebastiani F (2014) RNA-seq analysis of Quercus pubescens leaves: de novo transcriptome assembly, annotation and functional markers development. PLoS One 9(11):e112487PubMedPubMedCentralCrossRefGoogle Scholar
  46. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115PubMedPubMedCentralCrossRefGoogle Scholar
  47. Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573PubMedCrossRefGoogle Scholar
  48. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–researc0034.11CrossRefGoogle Scholar
  49. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626PubMedCrossRefGoogle Scholar
  50. Vitt P, Havens K, Kramer AT, Sollenberger D, Yates E (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143(1):18–27CrossRefGoogle Scholar
  51. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80(1):75–84CrossRefGoogle Scholar
  52. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12(8):1047–1064PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ecology, Evolution and DiversityGoethe University FrankfurtFrankfurtGermany
  2. 2.Center for Health and BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
  3. 3.Department of Ecology, Evolution and DiversityGoethe University Frankfurt and Senckenberg Biodiversity and Climate Research CentreFrankfurtGermany

Personalised recommendations