Advertisement

Comparative genomic and phylogenetic analyses of Populus section Leuce using complete chloroplast genome sequences

  • Kai Gao
  • Juan Li
  • Wasif Ullah Khan
  • Tianyun Zhao
  • Xiong Yang
  • Xiaoyu Yang
  • Bin Guo
  • Xinmin AnEmail author
Original Article
  • 146 Downloads
Part of the following topical collections:
  1. Taxonomy

Abstract

Species of Populus section Leuce are distributed throughout most parts of the Northern Hemisphere and have important economic and ecological significance. However, due to frequent hybridization within Leuce, the phylogenetic relationship between species has not been clarified. The chloroplast (cp) genome is characterized by maternal inheritance and relatively conservative mutation rates; thus, it is a powerful tool for building phylogenetic trees. In this study, we used the PacBio SEQUEL software to determine that the cp genome of Populus tomentosa has a length of 156,558 bp including a long single-copy region (84,717 bp), a small single-copy region (16,555 bp), and a pair of inverted repeat regions (27,643 bp). The cp genome contains 131 unique genes, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. We compared the cp genomes of seven species of section Leuce and identified five cp DNA markers with > 1% variable sites. Phylogenetic analyses revealed two evolutionary branches for section Leuce. The species with the closest relationship with P. tomenstosa was P. adenopoda, followed by P. alba. These cp genome data will help to determine the cp evolution of section Leuce and further elucidate the origin of P. tomentosa.

Keywords

Chloroplast genome PacBio SEQUEL Phylogenetic analysis Populus tomentosa 

Notes

Author contributions

Kai Gao and Xinmin An conceived and revised the experiment; Kai Gao, Tianyun Zhao, and Xiaoyu Yang assembled sequences and analyzed the data; Kai Gao, Juan Li, and Wasif Ullah Khan wrote the manuscript; Xiong Yang and Bin Guo collected the plant materials. All authors have read and approved the final version of the manuscript.

Funding information

This work was supported by the National Key Program on Transgenic Research (2018ZX08020002-002-004), the National Natural Science Foundation of China (31570661), the Graduate Training and Development Program of Beijing Municipal Commission of Education (BLCXY201512), and the medium-long-term project of young teachers (2015ZCQ-SW-01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

The final P. tomentosa cp sequence was submitted to the NCBI database with the GenBank accession number MK251149.

Supplementary material

11295_2019_1342_Fig8_ESM.png (106 kb)
Fig. S1

(PNG 106 kb)

11295_2019_1342_MOESM1_ESM.tif (1.7 mb)
High resolution image (TIF 1709 kb)
11295_2019_1342_MOESM2_ESM.txt (135 kb)
ESM 1 (TXT 134 kb)

References

  1. Barrett CF, Davis JI, Leebens-Mack J, Conran JG, Stevenson DW (2013) Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics 29:65–87.  https://doi.org/10.1111/j.1096-0031.2012.00418.x CrossRefGoogle Scholar
  2. Bartkowiak A, Kucharczyk J, Nowakowski TK, Perkal J, Szczotka H (1958) Developmental charts of children up to 3 years of age in lower Silesia. Pediatr Pol 33:473–480PubMedGoogle Scholar
  3. Bausher MG, Singh ND, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var “Ridge Pineapple”: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21.  https://doi.org/10.1186/1471-2229-6-21 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580CrossRefGoogle Scholar
  5. Carbonell-Caballero J, Alonso R, Ibanez V, Terol J, Talon M, Dopazo J (2015) A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus. Mol Biol Evol 32:2015–2035.  https://doi.org/10.1093/molbev/msv082 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cervera MT, Storme V, Soto A, Ivens B, Van Montagu M, Rajora OP, Boerjan W (2005) Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers TAG theoretical and applied genetics. Theoretische und angewandte Genetik 111:1440–1456.  https://doi.org/10.1007/s00122-005-0076-2 CrossRefPubMedGoogle Scholar
  7. Chen Z, Rao P, Yang X, Su X, Zhao T, Gao K, An X (2018) A global view of transcriptome dynamics during male floral bud development in Populus tomentosa. Sci Rep 8:722.  https://doi.org/10.1038/s41598-017-18084-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin AWT, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105.  https://doi.org/10.1093/dnares/dsr002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation, vol Part I, Chapter 1. NRC Research Press, National Research Council of Canada, Ottawa, pp 7–32Google Scholar
  10. Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206CrossRefGoogle Scholar
  11. Group CPW (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797CrossRefGoogle Scholar
  12. Group TAP (1998) An ordinal classification for the families of flowering. Plants Ann Mo Bot Gard 85:531–553CrossRefGoogle Scholar
  13. Hamzeh M, Dayanandan S (2004) Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA. Am J Bot 91:1398–1408.  https://doi.org/10.3732/ajb.91.9.1398 CrossRefPubMedGoogle Scholar
  14. Hamzeh M, Perinet P, Dayanandan S (2006) Genetic relationships among species of Populus (Salicaceae) based on nuclear genomic data. J Torrey Bot Soc 133:519–527. https://doi.org/10.3159/1095-5674(2006)133[519:Grasop]2.0.Co;2CrossRefGoogle Scholar
  15. Han XM, Wang YM, Liu YJ (2017) The complete chloroplast genome sequence of Populus wilsonii and its phylogenetic analysis. Mitochondrial DNA 2:932–933.  https://doi.org/10.1080/23802359.2017.1413291 CrossRefGoogle Scholar
  16. Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45:547–563.  https://doi.org/10.1016/j.ympev.2007.06.004 CrossRefPubMedGoogle Scholar
  17. He X, Bjornstad A (2012) Diversity of north European oat analyzed by SSR, AFLP and DArT markers. TAG Theor Appl Genet 125:57–70.  https://doi.org/10.1007/s00122-012-1816-8 CrossRefPubMedGoogle Scholar
  18. Hebert PD, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270(Suppl 1):S96–S99.  https://doi.org/10.1098/rsbl.2003.0025 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254CrossRefGoogle Scholar
  20. Howe CJ, Barbrook AC, Koumandou VL, Nisbet RE, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond Ser B Biol Sci 358:99–106; discussion 106-107.  https://doi.org/10.1098/rstb.2002.1176 CrossRefGoogle Scholar
  21. Huang DI, Hefer CA, Kolosova N, Douglas CJ, Cronk QC (2014a) Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). New Phytol 204:693–703.  https://doi.org/10.1111/nph.12956 CrossRefPubMedGoogle Scholar
  22. Huang H, Shi C, Liu Y, Mao SY, Gao LZ (2014b) Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14:151.  https://doi.org/10.1186/1471-2148-14-151 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374.  https://doi.org/10.1073/pnas.0709121104 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kersten B, Faivre Rampant P, Mader M, le Paslier MC, Bounon R, Berard A, Vettori C, Schroeder H, Leplé JC, Fladung M (2016) Genome sequences of Populus tremula chloroplast and mitochondrion: implications for holistic poplar breeding. PLoS One 11:e0147209.  https://doi.org/10.1371/journal.pone.0147209 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res:247–261CrossRefGoogle Scholar
  27. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736.  https://doi.org/10.1101/gr.215087.116 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642CrossRefGoogle Scholar
  29. Lexer C, Fay MF, Joseph JA, Nica MS, Heinze B (2005) Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Mol Ecol 14:1045–1057.  https://doi.org/10.1111/j.1365-294X.2005.02469.x CrossRefPubMedGoogle Scholar
  30. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  31. Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274.  https://doi.org/10.1007/s00294-007-0161-y CrossRefPubMedGoogle Scholar
  32. Lu RS, Li P, Qiu YX (2016) The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: comparative genomic and phylogenetic analyses. Front Plant Sci 7:2054.  https://doi.org/10.3389/fpls.2016.02054 CrossRefPubMedGoogle Scholar
  33. Ma PF, Zhang YX, Zeng CX, Guo ZH, Li DZ (2014) Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst Biol 63:933–950.  https://doi.org/10.1093/sysbio/syu054 CrossRefPubMedGoogle Scholar
  34. Martin G, Baurens FC, Cardi C, Aury JM, D'Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8:e67350.  https://doi.org/10.1371/journal.pone.0067350 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mejnartowicz M (1991) Inheritance of chloroplast DNA inPopulus TAG Theoretical and applied genetics. Theoretische und angewandte Genetik 82:477–480.  https://doi.org/10.1007/BF00588602 CrossRefPubMedGoogle Scholar
  36. Melotto-Passarin DM, Tambarussi EV, Dressano K, De Martin VF, Carrer H (2011) Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. Genet Mol Res 10:2024–2033.  https://doi.org/10.4238/vol10-3gmr1019 CrossRefPubMedGoogle Scholar
  37. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A 104:19363–19368.  https://doi.org/10.1073/pnas.0708072104 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140.  https://doi.org/10.1146/annurev.arplant.51.1.111 CrossRefPubMedGoogle Scholar
  39. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefPubMedGoogle Scholar
  40. Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130:S6–S29CrossRefGoogle Scholar
  41. Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84.  https://doi.org/10.1186/1741-7007-7-84 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804.  https://doi.org/10.1038/nature02053 CrossRefPubMedGoogle Scholar
  43. Shetty SM, Md Shah MU, Makale K, Mohd-Yusuf Y, Khalid N, Othman RY (2016) Complete chloroplast genome sequence of corroborates structural heterogeneity of inverted repeats in wild progenitors of cultivated bananas and plantains. Plant Genome 9.  https://doi.org/10.3835/plantgenome2015.09.0089 CrossRefGoogle Scholar
  44. Sovic I, Sikic M, Wilm A, Fenlon SN, Chen S, Nagarajan N (2016) Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat Commun 7:11307.  https://doi.org/10.1038/ncomms11307 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). TAG Theor Appl Genet 106:411–422.  https://doi.org/10.1007/s00122-002-1031-0 CrossRefPubMedGoogle Scholar
  46. Uthaipaisanwong P, Chanprasert J, Shearman JR, Sangsrakru D, Yoocha T, Jomchai N, Jantasuriyarat C, Tragoonrung S, Tangphatsornruang S (2012) Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.). Gene 500:172–180.  https://doi.org/10.1016/j.gene.2012.03.061 CrossRefPubMedGoogle Scholar
  47. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963.  https://doi.org/10.1371/journal.pone.0112963 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang Z, Du S, Dayanandan S, Wang D, Zeng Y, Zhang J (2014) Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS One 9:e103645.  https://doi.org/10.1371/journal.pone.0103645 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297.  https://doi.org/10.1007/s11103-011-9762-4 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xiang B, Li X, Qian J, Wang L, Ma L, Tian X, Wang Y (2016) The complete chloroplast genome sequence of the medicinal plant Swertia mussotii using the PacBio RS II platform. Molecules 21.  https://doi.org/10.3390/molecules21081029 CrossRefGoogle Scholar
  51. Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, al-Mssallem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5:e12762.  https://doi.org/10.1371/journal.pone.0012762 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G (2016) Comparative analysis of the complete chloroplast genomes of five Quercus species. Front Plant Sci 7:959.  https://doi.org/10.3389/fpls.2016.00959 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zeng S, Zhou T, Han K, Yang Y, Zhao J, Liu ZL (2017) The complete chloroplast genome sequences of six Rehmannia species. Genes 8.  https://doi.org/10.3390/genes8030103 CrossRefGoogle Scholar
  54. Zhu Z (1992) Collection, conservation and utilization of plus tree resources of Populus tomentosa in China. J Beijing For Univ 14.  https://doi.org/10.13332/j.1000-1522.1992.s3.002

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kai Gao
    • 1
  • Juan Li
    • 1
  • Wasif Ullah Khan
    • 1
  • Tianyun Zhao
    • 1
  • Xiong Yang
    • 1
  • Xiaoyu Yang
    • 1
  • Bin Guo
    • 2
  • Xinmin An
    • 1
    Email author
  1. 1.National Engineering Laboratory for Tree Breeding, College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
  2. 2.Shanxi Academy of Forest SciencesTaiyuanChina

Personalised recommendations