Advertisement

Comparison of fertile and sterile male gametogenesis in Cryptomeria japonica D. Don

  • Norihiro FutamuraEmail author
  • Tomohiro Igasaki
  • Maki Saito
  • Hideaki Taira
  • Kenji ShinoharaEmail author
Original Article
  • 57 Downloads
Part of the following topical collections:
  1. Mating systems

Abstract

Cryptomeria japonica D. Don is one of the most important conifers for forestry; however, the pollinosis caused by this species is the most prevalent allergy in Japan. Male-sterile mutants have attracted attention as countermeasures to prevent pollen dispersion. Histological and transcriptomic analyses were conducted on one of the C. japonica male-sterile mutant lines, Toyama 1. Histological examination of pollen development revealed that the lamellar structure of the endexine was not observed in pollen of Toyama 1 and that the microspore was disrupted during the tetrad stage. To determine the mechanism causing male sterility in C. japonica, we analyzed gene expression in normal and sterile male strobili derived from the progeny of Toyama 1. A microarray of 22,882 low-redundancy sequences was designed from C. japonica cDNAs for this experiment. Microarray analysis revealed that the expression pattern of genes in male strobili during pollen development was very similar between fertile and male-sterile individuals. We confirmed 32 genes that were expressed at a lower level in sterile male strobili than in fertile ones at the stage when the disrupted microspores were observed in the sterile mutant. Nine of these 32 genes showed similarity to those involved in carbohydrate metabolic process, phosphorylation, and transmembrane transport. Other genes showed similarity to those involved in regulation of transcription, signal transduction, protein modification, and transport of ions and amino acids. These results suggest that the gene responsible for the Toyama 1 mutant may be involved in the network regulating pollen wall formation.

Keywords

Cryptomeria japonica Male gametogenesis Male sterility Pollen development Pollen wall 

Notes

Acknowledgments

This research was supported in part by a Grant-in-Aid (Development of Technologies for Control of Pollen Production by Genetic Engineering) from the Forest Agency of Japan.

Supplementary material

11295_2019_1335_MOESM1_ESM.xlsx (23 kb)
Supplemental Tables 1 (XLSX 23 kb)
11295_2019_1335_MOESM2_ESM.xls (326 kb)
Supplemental Dataset 1 (XLS 326 kb)
11295_2019_1335_MOESM3_ESM.pdf (8.6 mb)
Supplemental Figures 1 (PDF 8856 kb)

References

  1. Alves-Ferreira M, Wellmer F, Banhara A, Kumar V, Riechmann JL, Meyerowitz EM (2007) Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol 145:747–762PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andersson E (1947) A case of asyndesis in Picea abies. Hereditas 33:301–347CrossRefGoogle Scholar
  3. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39:170–181PubMedCrossRefGoogle Scholar
  4. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K (2005) The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7CrossRefGoogle Scholar
  5. Ariizumi T, Toriyama K (2007) Pollen exine pattern formation is dependent on three major developmental processes in Arabidopsis thaliana. Int J Plant Dev Biol 1:106–115Google Scholar
  6. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460PubMedCrossRefGoogle Scholar
  7. Basrai MA, Hieter P, Boeke JD (1997) Small open reading frames: beautiful needles in the haystack. Genome Res 7:768–771PubMedCrossRefGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B Stat Methodol 57:289–300Google Scholar
  9. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193PubMedCrossRefGoogle Scholar
  10. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478PubMedCrossRefGoogle Scholar
  11. Carlsson J, Lagercrantz U, Sundstrom J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J 49:452–462PubMedCrossRefGoogle Scholar
  12. Chen SH, Chung NJ, Wang YN, Lee CL, Lee YL, Tsai PF (2006) Study of male sterility in Taiwania cryptomerioides Hayata (Taxodiaceae). Protoplasma 228:137–144PubMedCrossRefGoogle Scholar
  13. Chen YN, Lei SL, Zhou ZF, Zeng FQ, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD (2009) Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Plant Cell Rep 28:1363–1372PubMedCrossRefGoogle Scholar
  14. Chu F-H, Shen C-W, Lee Y-R, Kuo S-R (2011) Genes expressed in Taiwania reproductive organs include two male-cone protein 1 precursor homologs. J Plant Biochem Biotechnol 20:5–11CrossRefGoogle Scholar
  15. Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145PubMedPubMedCentralCrossRefGoogle Scholar
  16. El Maâtaoui M, Pichot C (2001) Microsporogenesis in the endangered species Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen. Planta 213:543–549PubMedCrossRefGoogle Scholar
  17. Futamura N, Ujino-Ihara T, Nishiguchi M, Kanamori H, Yoshimura K, Sakaguchi M, Shinohara K (2006) Analysis of expressed sequence tags from Cryptomeria japonica pollen reveals novel pollen-specific transcripts. Tree Physiol 26:1517–1528PubMedCrossRefGoogle Scholar
  18. Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9:383PubMedPubMedCentralCrossRefGoogle Scholar
  19. Futamura N, Saito M, Shinohara K (2009) Transcriptional differences in male strobili between the male-sterile mutant and wild type of Cryptomeria japonica. Abstract Ann Meeting of JSPP 2009:672Google Scholar
  20. Gabarayeva N, Grigorjeva V, Polevova S (2011) Exine and tapetum development in Symphytum officinale (Boraginaceae). Exine substructure and its interpretation. Plant Syst Evol 296:101–120CrossRefGoogle Scholar
  21. Gabarayeva NI, Grigorjeva VV (2013) Experimental modelling of exine-like structures. Grana 52:241–257CrossRefGoogle Scholar
  22. Ge XC, Chang F, Ma H (2010) Signaling and transcriptional control of reproductive development in Arabidopsis. Curr Biol 20:R988–R997PubMedCrossRefGoogle Scholar
  23. Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci U S A 98:6522–6527PubMedPubMedCentralCrossRefGoogle Scholar
  24. Guan Y-F, Huang X-Y, Zhu J, Gao J-F, Zhang H-X, Yang Z-N (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147:852–863PubMedPubMedCentralCrossRefGoogle Scholar
  25. Guédès M (1982) Exine stratification, ectexine structure and angiosperm evolution. Grana 21:161–170CrossRefGoogle Scholar
  26. Hanada K, Zhang X, Borevitz JO, Li W-H, Shiu S-H (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17:632–640PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hirsche J, Engelke T, Völler D, Götz M, Roitsch T (2009) Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theor Appl Genet 118:235–245PubMedCrossRefGoogle Scholar
  28. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hosoo Y, Yoshii E, Negishi K, Taira H (2005) A histological comparison of the development of pollen and female gametophytes in fertile and sterile Cryptomeria japonica. Sex Plant Reprod 18:81–89CrossRefGoogle Scholar
  30. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedPubMedCentralCrossRefGoogle Scholar
  31. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264PubMedCrossRefGoogle Scholar
  32. Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43:1285–1292PubMedCrossRefGoogle Scholar
  33. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kainkaryam R, Bruex A, Gilbert A, Schiefelbein J, Woolf P (2010) poolMC: smart pooling of mRNA samples in microarray experiments. BMC Bioinformatics 11:299PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kaneko Y, Motohashi Y, Nakamura H, Endo T, Eboshida A (2005) Increasing prevalence of Japanese cedar pollinosis: a meta-regression analysis. Int Arch Allergy Immunol 136:365–371PubMedCrossRefGoogle Scholar
  36. Kang J, Zhang G, Bonnema G, Fang Z, Wang X (2008) Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Mol Biol 66:177–192PubMedCrossRefGoogle Scholar
  37. Karni L, Aloni B (2002) Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): possible role in pollen germination under conditions of high temperature and CO2 enrichment. Ann Bot 90:607–612PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kawana M, Yoshii E, Taira H (2006) Mechanism of female sterility in sugi (Cryptomeria japonica D. Don). J Jpn For Soc 88:156–159 (in Japanese with English summary)CrossRefGoogle Scholar
  39. Kendziorski C, Irizarry RA, Chen K-S, Haag JD, Gould MN (2005) On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A 102:4252–4257PubMedPubMedCentralCrossRefGoogle Scholar
  40. Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190PubMedGoogle Scholar
  41. Kurita M, Taniguchi T, Nakada R, Kondo T, Watanabe A (2011) Spatiotemporal gene expression profiles associated with male strobilus development in Cryptomeria japonica by suppression subtractive hybridization. Breed Sci 61:174–182CrossRefGoogle Scholar
  42. Kurita M, Konagaya K, Watanabe A, Kondo T, Ishii K, Taniguchi T (2013) The promoter of an A9 homolog from the conifer Cryptomeria japonica imparts male strobilus-dominant expression in transgenic trees. Plant Cell Rep 32:319–328PubMedCrossRefGoogle Scholar
  43. Kurmann MH (1989) Pollen wall formation in Abies concolor and a discussion on wall layer homologies. Can J Bot 67:2489–2504CrossRefGoogle Scholar
  44. Kurmann MH (1990) Exine ontogeny in conifers. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic Press, London, pp 157–172CrossRefGoogle Scholar
  45. Kurmann MH (1992) Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bull 47:25–39CrossRefGoogle Scholar
  46. Miura S, Nameta M, Yamamoto T, Igarashi M, Taira H (2011) Mechanisms of male sterility in four Cryptomeria japonica individuals with obvious visible abnormality at the tetrad stage. J Jpn For Soc 93:1–7 (In Japanese with English summary)CrossRefGoogle Scholar
  47. Moriguchi Y, Ujino-Ihara T, Uchiyama K, Futamura N, Saito M, Ueno S, Matsumoto A, Tani N, Taira H, Shinohara K, Tsumura Y (2012) The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics 13:95PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP, Ballin J, McCormick M, Norton J, Pollock T, Sumwalt T, Butcher L, Porter D, Molla M, Hall C, Blattner F, Sussman MR, Wallace RL, Cerrina F, Green RD (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12:1749–1755PubMedPubMedCentralCrossRefGoogle Scholar
  49. Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551CrossRefGoogle Scholar
  50. Paxson-Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198:53–65CrossRefGoogle Scholar
  51. Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127:1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  52. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756PubMedPubMedCentralCrossRefGoogle Scholar
  53. Proels R, Hause B, Berger S, Roitsch T (2003) Novel mode of hormone induction of tandem tomato invertase genes in floral tissues. Plant Mol Biol 52:191–201PubMedCrossRefGoogle Scholar
  54. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301PubMedCrossRefGoogle Scholar
  55. Rowley JR, Walles B (1987) Origin and structure of Ubisch bodies in Pinus sylvestris. Acta Soc Bot Pol 56:215–227CrossRefGoogle Scholar
  56. Rowley JR, Skvarla JJ, Walles B (2000) Microsporogenesis in Pinus sylvestris. VI. Exine and tapetal development during the tetrad period. Nor J Bot 20:67–87CrossRefGoogle Scholar
  57. Saito M, Taira H, Furuta Y (1998) Cytological and genetical studies on male sterility in Cryptomeria japonica D. Don. J For Res 3:167–173CrossRefGoogle Scholar
  58. Saito M (2008) Study on forest tree breeding for male sterility of Cryptomeria japonica D. Don. Shinrin Kagaku 54:17–20 (in Japanese)Google Scholar
  59. Saito M (2010) Breeding strategy for the pollinosis preventive cultivars of Cryptomeria japonica D. Don. J Jpn For Soc 92:316–323 (in Japanese with English summary)CrossRefGoogle Scholar
  60. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3PubMedCrossRefGoogle Scholar
  61. Stone DE, Sellers SC, Kress WJ (1981) Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos (Zingiberales: Costaceae) pollen. Am J Bot 68:49–63CrossRefGoogle Scholar
  62. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542PubMedCrossRefGoogle Scholar
  63. Taira H, Teranishi H, Kenda Y (1993) A case study of male sterility in sugi (Cryptomeria japonica). J Jpn For Soc 75:377–379 (in Japanese with English summary)Google Scholar
  64. Tian Y, Yang H, Zhang H, Dai Q, Fang J, Qing X, Lu X (2010) The molecular mechanisms of male reproductive organogenesis in rice (Oryza sativa L.). Plant Growth Regul 61:11–20CrossRefGoogle Scholar
  65. Tsubomura M, Kurita M, Watanabe A (2016) Determination of male strobilus developmental stages by cytological and gene expression analyases in Japanese cedar (Cryptomeria japonica). Tree Physiol 38:653–666CrossRefGoogle Scholar
  66. Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y (1997) Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet 94:764–772CrossRefGoogle Scholar
  67. Twell D, Oh S-A, Honys D (2006) Pollen development, a genetic and transcriptomic view. In: Malho R (ed) The pollen tube, vol 3. Springer, Berlin, pp 15–45CrossRefGoogle Scholar
  68. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160PubMedCrossRefGoogle Scholar
  69. Uehara K, Sahashi N (2000) Pollen wall development in Cryptomeria japonica (Taxodiaceae). Grana 39:267–274CrossRefGoogle Scholar
  70. Uehara K, Saiki K (2011) Pollen wall development in Sciadopitys verticillata (Sciadopityaceae). Plant Syst Evol 294:177–183CrossRefGoogle Scholar
  71. Ueuma H, Yoshii E, Hosoo Y, Taira H (2009) Cytological study of a male-sterile Cryptomeria japonica that does not release microspores from tetrads. J For Res 14:123–126CrossRefGoogle Scholar
  72. Ujino-Ihara T, Yoshimura K, Ugawa Y, Yoshimaru H, Nagasaka K, Tsumura Y (2000) Expression analysis of ESTs derived from the inner bark of Cryptomeria japonica. Plant Mol Biol 43:451–457PubMedCrossRefGoogle Scholar
  73. Ujino-Ihara T, Taguchi Y, Yoshimura K, Tsumura Y (2003) Analysis of expressed sequence tags derived from developing seed and pollen cones of Cryptomeria japonica. Plant Biol 5:600–607CrossRefGoogle Scholar
  74. Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y (2005) Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol 59:895–907PubMedCrossRefGoogle Scholar
  75. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1CrossRefGoogle Scholar
  76. Walden AR, Walter C, Gardner RC (1999) Genes expressed in Pinus radiata male cones include homologs to anther-specific and pathogenesis response genes. Plant Physiol 121:1103–1116PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39PubMedCrossRefGoogle Scholar
  78. Wilson ZA, Zhang D-B (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492PubMedCrossRefGoogle Scholar
  79. Wilson VR, Owens JN (2003) Histology of sterile male and female cones in Pinus monticola (western white pine). Sex Plant Reprod 15:301–310Google Scholar
  80. Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107PubMedPubMedCentralCrossRefGoogle Scholar
  81. Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548PubMedPubMedCentralCrossRefGoogle Scholar
  82. Yoshida K, Nishiguchi M, Futamura N, Nanjo T (2007) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9PubMedCrossRefGoogle Scholar
  83. Yoshii E, Taira H (2007) Cytological and genetical studies on male sterile sugi (Cryptomeria japonica D. Don), Shindai 1 and Shindai 5. J Jpn For Soc 89:26–30 (in Japanese with English summary)CrossRefGoogle Scholar
  84. Zhao D (2009) Control of anther cell differentiation: a teamwork of receptor-like kinases. Sex Plant Reprod 22:221–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research InstituteTsukubaJapan
  2. 2.Toyama Prefectural Agricultural, Forestry and Fisheries Research CenterForestry Research InstituteTateyama-machiJapan
  3. 3.Graduate School of Science and Technology, Biosphere CourseEx Niigata UniversityNiigataJapan
  4. 4.RIKEN Center for Sustainable Resource ScienceWakoJapan

Personalised recommendations