Advertisement

Tree Genetics & Genomes

, 15:16 | Cite as

Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach

  • Selin Gül Ünsal
  • Yelda Özden Çiftçi
  • Burcu Uzan Eken
  • Ercan Velioğlu
  • Gabriele Di Marco
  • Angelo GismondiEmail author
  • Antonella Canini
Original Article
  • 202 Downloads
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

Wild cherry (Prunus avium L.) is a plant widely distributed around the world that possesses a great economic value. Indeed, it represents both a fruit source and one of the most important European hardwood species. For this reason, in order to obtain information about Turkish authoctonous P. avium germplasm and favor wood management policies and preservation strategies, we investigated the phylogenetic relationships existing among seven wild cherry populations (a total of 139 individuals) located in Northern Turkey using DNA barcoding. For each specimen, in detail, we sequenced a nuclear one (ITS) and two plastidial (trnH-psbA and matK) genes, to identify nucleotide polymorphisms, hypervariable genetic regions, and mutation events. Applying neighbor-joining method and genetic structure analysis, a high rate of crossbreeding among stands was revealed, except for one population (Gölcük) whose molecular profile was less similar to the others. In general, we observed that ITS was the most informative marker, suggesting it as a good candidate for P. avium intraspecific study. We conclude that DNA barcode technique, usually applied for species identification, may be also used as a scientific tool for the detection of plant biodiversity at population level.

Keywords

ITS matK Population genetics Prunus avium trnH-psbaA Phylogenetics 

Notes

Acknowledgments

The authors want to thank Prof. Ahu Altınkut Uncuoğlu and Dr. Ezgi Çabuk Şahin for their great contribution in data analysis and Miss Sophie Gart who revised the English form of this manuscript.

Data archiving statement

Genetic data were registered in GenBank database. ID number of each deposited sequence, with relative details, was reported in Supplemental Material - Table S1 and copied below.

Population

trnH-psbA

matK

ITS

Abant Population (A)

MF431607

MF431608

MF431606

Molla Fenari Population (B)

MF590194

MF590188

MF590200

Yedigöller Population (C)

MF590195

MF590189

MF590201

Düzce Population (D)

MF590197

MF590190

MF590202

Melen Population (E)

MF590196

MF590191

MF590203

Kefken Population (F)

MF590198

MF590192

MF590204

Gölcük Population (G)

MF590199

MF590193

MF590205

Author contribution statement

AG, AC YOC, and EV designed research; SGU performed research; BUK carried out the sampling; EV authorized the sampling; SGU, AG, and GDM analyzed data; SGU and AG wrote the paper; AC provided financial support; all authors edited, revised, and provided comments to the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2019_1323_MOESM1_ESM.docx (4.3 mb)
ESM 1 (DOCX 4367 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  2. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29(3):417–434CrossRefGoogle Scholar
  3. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277CrossRefGoogle Scholar
  4. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004) GenBank: update. Nucleic Acids Res 32(Database issue):D23–D36CrossRefGoogle Scholar
  5. Bortiri E, Oh SH, Jiang J, Baggett S, Granger A, Weeks C, Parfitt DE (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26(4):797–807Google Scholar
  6. Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M (2010) Identification of poisonous plants by DNA barcoding approach. Int J Legal Med 124(6):595–603CrossRefGoogle Scholar
  7. Bruni I, De Mattia F, Martellos S, Galimberti A, Savadori P, Casiraghi M, Labra M (2012) DNA barcoding as an effective tool in improving a digital plant identification system: a case study for the area of Mt Valerio, Trieste (NE Italy). PLoS One 7(9):e43256CrossRefGoogle Scholar
  8. Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users’ awareness about the method. Brief Bioinform 11(4):440–453CrossRefGoogle Scholar
  9. Chiej R (1984) MacDonald encyclopedia of medicinal plants, LondonGoogle Scholar
  10. De Rogatis A, Ferrazzini D, Ducci F, Guerri S, Carnevale S, Belletti P (2013) Genetic variation in Italian wild cherry (Prunus avium L) as characterized by nSSR markers. Forestry 86(3):391–400CrossRefGoogle Scholar
  11. Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7(4):e35071CrossRefGoogle Scholar
  12. Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  13. Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51(4):419–435CrossRefGoogle Scholar
  14. Erickson DL, Spouge J, Resch A, Weigt LA, Kress JW (2008) DNA barcoding in land plants: developing standards to quantify and maximize success. Taxon 57(4):1304–1316CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  16. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  17. Fazekas AJ (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3:2802CrossRefGoogle Scholar
  18. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  19. Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6Google Scholar
  20. Fernandez i, Marti A, Athanson B, Koepke T, Font i, Forcada C, Dhingra A, Oraguzie N (2012) Genetic diversity and relatedness of sweet cherry (Prunus avium L.) cultivars based on single nucleotide polymorphic markers. Front Plant Sci 3:116Google Scholar
  21. Ganopoulos IV, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris AS (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181(2):237–251CrossRefGoogle Scholar
  22. Gere J, Yessoufou K, Daru BH, Mankga LT, Maurin O, van der Bank M (2013) Incorporating trnH-psbA to the core DNA barcodes improves significantly species discrimination within southern African Combretaceae. ZooKeys 365:129–147CrossRefGoogle Scholar
  23. Gismondi A, Rolfo MF, Leonardi D, Rickards O, Canini A (2012) Identification of ancient Olea europaea L and Cornus mas L by DNA barcoding. C R Biol 335(7):472–479CrossRefGoogle Scholar
  24. Gismondi A, Fanali F, Labarga JMM, Caiola MG, Canini A (2013) Crocus sativus L genomics and different DNA barcode applications. Plant Syst Evol 299(10):1859–1863CrossRefGoogle Scholar
  25. Gismondi A, Di Marco G, Delorenzo M, Canini A (2015) Upgrade of Castanea sativa (mill) genetic resources by sequencing of barcode markers. J Genet 94(3):519–524CrossRefGoogle Scholar
  26. Gismondi A, Di Marco G, Martini F, Sarti L, Crespan M, Martínez-Labarga C, Rickards O, Canini A (2016) Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L specimen containing ancient DNA partially preserved in modern ecotypes. J Archaeol Sci 69:75–84CrossRefGoogle Scholar
  27. Grieve A (1984) Modern herbal. PenguinGoogle Scholar
  28. Group CBOL Plant Working et al (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106(31):12794–12797CrossRefGoogle Scholar
  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT Nucl Acids Symp Ser 41:95–98Google Scholar
  30. Hilu KW, Alice LA, Liang H (1999) Phylogeny of Poaceae inferred from matK sequences. Ann Mo Bot Gard 86:835–851CrossRefGoogle Scholar
  31. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6(5):1–13CrossRefGoogle Scholar
  32. Hoveka LN, van der Bank M, Boatwright JS, Bezeng BS, Yessoufou K (2016) The noncoding trnH-psbA spacer, as an effective DNA barcode for aquatic freshwater plants, reveals prohibited invasive species in aquarium trade in South Africa. S Afr J Mar Sci 102:208–216Google Scholar
  33. Jarni K, De Cuyper B, Brus R (2012) Genetic variability of wild cherry (Prunus avium L) seed stands in Slovenia as revealed by nuclear microsatellite loci. PLoS One 7(7):1–5CrossRefGoogle Scholar
  34. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  35. Kocyan A, de Vogel EF, Conti E, Gravendeel B (2008) Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: a step forward in understanding the evolution of the Aeridinae. Mol Phylogenet Evol 48(2):422–443CrossRefGoogle Scholar
  36. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2(6):e508CrossRefGoogle Scholar
  37. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102(23):8369–8374CrossRefGoogle Scholar
  38. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  39. Lahaye R (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923–2928CrossRefGoogle Scholar
  40. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–166CrossRefGoogle Scholar
  41. Mohanty A, Martin JP, Aguinagalde I (2001) Chloroplast DNA study in wild populations and some cultivars of Prunus avium L. Theor Appl Genet 103(1):112–117CrossRefGoogle Scholar
  42. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biol Sci 12:357–358Google Scholar
  43. Pang X, Song J, Zhu Y, Xu H, Huang L, Chen S (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27(2):165–170CrossRefGoogle Scholar
  44. Perazzini R, Leonardi D, Ruggeri S, Alesiani D, D’Arcangelo G, Canini A (2008) Characterization of Phaseolus vulgaris L landraces cultivated in Central Italy. Plant Foods Hum Nutr 63(4):211–218CrossRefGoogle Scholar
  45. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  46. Russell K (2003) Technical Guidelines for genetic conservation and use for wild cherry (Prunus avium), EUFORGEN, International Plant Genetic Resources Institute Rome Italy 1–6. http://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Technical_guidelines/859_Technical_guidelines_for_genetic_conservation_and_use_for_Wild_cherry__Prunus_avium_.pdf. Accessed 10 Aug 2018
  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  48. Santos C, Pereira F (2018) Identification of plant species using variable length chloroplast DNA sequences. Forensic Sci Int Genet 36:1–12CrossRefGoogle Scholar
  49. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1805–1811CrossRefGoogle Scholar
  50. Scaltsoyiannes A, Tsoulpha P, Iliev I, Theriou K, Tsaktsira M, Mitras D, Karanikas C, Mahmout S, Christopoulos V, Scaltsoyiannes V, Zaragotas D, Tzouvara A (2009) Vegetative propagation of ornamental genotypes of Prunus avium L. Prop Ornam Plant 9:198–206Google Scholar
  51. Scholz H, Scholz I (1995) Prunoideae. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, 2nd edn. Blackwell Wissenschafts-Verlag, Berlin, pp 446–510Google Scholar
  52. Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55(11):1069–1079CrossRefGoogle Scholar
  53. Tavaud M, Zanetto A, Santi F, Dirlewanger E (2001) Structuration of genetic diversity in cultivated and wild cherry trees using AFLP markers. Acta Hortic 263–269Google Scholar
  54. Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE (2012) DNAbarcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çesme-Karaburun Peninsula (Turkey). Mol Ecol Resour 12:620–633CrossRefGoogle Scholar
  55. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  56. Vaughan SP, Cottrell JE, Moodley DJ, Connolly T, Russell K (2007) Clonal structure and recruitment in British wild cherry (Prunus avium L). For Ecol Manag 242(2–3):419–430CrossRefGoogle Scholar
  57. Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J (2010) DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 10(1):205CrossRefGoogle Scholar
  58. Welk E, de Rigo D, Caudullo G (2016) Prunus avium in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species, 1st edn, Luxembourg, p e01491dGoogle Scholar
  59. Yaman B (2003) Yabani kiraz (Cerasus avium (L.) Moench). GÜ-Orman Fakültesi Dergisi 3(1):114–122Google Scholar
  60. Yu J, Xue JH, Zhou SL (2011) New universal matK primers for DNA barcoding angiosperms. J Syst Evol 49(3):176–181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityKocaeliTurkey
  2. 2.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Republic of Turkey General Directorate of ForestryPoplar and Rapidly Developing Forest Trees Research InstituteKocaeliTurkey

Personalised recommendations