Advertisement

Tree Genetics & Genomes

, 15:3 | Cite as

Spatial distribution and genetic diversity of wild date palm (Phoenix sylvestris) growing in coastal Bangladesh

  • Md. Nurul Huda
  • Mehfuz HasanEmail author
  • Hasan M. Abdullah
  • Umakanta Sarker
Original Article
  • 97 Downloads
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

The aim of this study was to explore the prospects of integrating simple sequence repeat (SSR) or microsatellite marker data into a geographical information system to anticipate spatial distribution of allelic diversity of wild date palms in Bangladesh. The genetic diversity, spatial distribution, and population structure were assessed in 38 genotypes of wild date palms using 12 SSR primer pairs. A total of 67 alleles were counted ranging from 4 (KSU-PDL74) to 8 (MPdCIR070). Major allele frequency was in the range of 0.26 (MPdCIR032) to 0.89 (KSU-PDL74), polymorphic information content ranged from 0.18 (KSU-PDL74) to 0.75 (MPdCIR032), and gene diversity ranged from 0.19 (KSU-PDL74) to 0.77 (MPdCIR032). Three major clusters were formed by the unrooted tree grouping. The population structure divided 38 genotypes into six populations. Population 1 and Population 2 each contained seven pure genotypes while Populations 3, 4, 5, and 6 contained 6, 4, 3, and 3 pure genotypes, respectively. The remaining eight genotypes were admixtures. The pairwise Fst estimate among sub-groups indicated that the six populations are undoubtedly different from each other. The date palm genotypes of Amtoli, Doshmina, and Kuakata in coastal Bangladesh contained the highest allelic diversity (13–15). SSR2-80 and SSR5-80 were considered to be the most important alleles for the identification of areas with unique diversity as these alleles are repetitively found in a small geographic area. Locally common alleles of Bangladeshi wild date palm were identified. Outcomes of this research will offer valuable guidelines for future breeding strategies and will be beneficial for assessment and conservation of Bangladeshi wild date palm genetic resources.

Keywords

Common allele Molecular marker Genotyping Allelic diversity Fixation indices 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

The description of the data has been provided as a Supplementary file (ESM_1). The Accession numbers of the genotypes will be included after receiving them from TreeGenes (http://treegenesdb.org).

Supplementary material

11295_2018_1310_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)

References

  1. Adams JR, Kelly BT, Waits LP (2003) Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Mol Ecol 12(8):2175–2186PubMedCrossRefGoogle Scholar
  2. Ahmed TA, Al-Qaradawi AY (2009) Molecular phylogeny of Qatari date palm genotypes using simple sequence repeats markers. Biotechnology 8(1):126–131CrossRefGoogle Scholar
  3. Alam M, Sarker SK (2011) Homestead agroforestry in Bangladesh: dynamics of stand structure and biodiversity. J Sustain For 30(6):584–599CrossRefGoogle Scholar
  4. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29(6):521–527PubMedCrossRefGoogle Scholar
  5. Al-Faifi SA, Migdadi HM, Algamdi SS, Khan MA, Ammar MH, Al-Obeed RS et al (2016) Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L.) cultivars. Electron J Biotechnol 21:18–25CrossRefGoogle Scholar
  6. Ali, H. G. (2010). Development of date palm cultivation and its role in sustainability of agriculture in Oman. In IV international date palm conference 882 (pp. 29–35)Google Scholar
  7. Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1(5):2320–2325PubMedCrossRefGoogle Scholar
  8. Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J et al (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 4:2274.  https://doi.org/10.1038/ncomms3274 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Al-Najm A, Luo S, Ahmad NM, Trethowan R (2016) Molecular variability and genetic relationships of date palm (‘Phoenix dactylifera’L.) cultivars based on inter-primer binding site (iPBS) markers. Aust J Crop Sci 10(5):732–740CrossRefGoogle Scholar
  10. Arabnezhad H, Bahar M, Mohammadi HR, Latifian M (2012) Development, characterization and use of microsatellite markers for germplasm analysis in date palm (Phoenix dactylifera L.). Sci Hortic 134:150–156CrossRefGoogle Scholar
  11. Asgary, A., Badri, A., Rafiean, M., & Hajinejad, A. (2006). Lost and used post disaster development opportunities in bam reconstruction. In I-Rec Conference on Post-Disaster Reconstruction: Meeting the Stakeholders Needs, Mayo (pp. 17–18)Google Scholar
  12. Becerra V, Paredes M, Ferreira ME, Gutiérrez E, Díaz LM (2017) Assessment of the genetic diversity and population structure in temperate japónica rice germplasm used in breeding in Chile, with SSR markers. Chilean J Agric Res 77(1):15–26CrossRefGoogle Scholar
  13. Billotte N, Marseillac N, Brottier P, Noyer JL, Jacquemoud-Collet JP, Moreau C et al (2004) Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): characterization and utility across the genus Phoenix and in other palm genera. Mol Ecol Resour 4(2):256–258CrossRefGoogle Scholar
  14. Bodia A, Elhoumaizi MA, Ndir KN, Hasnoui A, Nachtigall M, Wehling P (2012) Genetic diversity analysis of date palm (Phoenix dactylifera L.) cultivars from Figuig oasis (Morocco) using SSR markers. IJSAT 2:96–104Google Scholar
  15. Cao BR, Chao CCT (2002) Identification of date cultivars in California using AFLP markers. HortScience 37(6):966–968Google Scholar
  16. Chaluvadi SR, Khanam S, Aly MA, Bennetzen JL (2014) Genetic diversity and population structure of native and introduced date palm (Phoenix dactylifera) germplasm in the United Arab Emirates. Trop Plant Biol 7(1):30–41CrossRefGoogle Scholar
  17. Chowdhury MSH, Halim MA, Muhammed N, Haque F, Koike M (2008) Traditional utilization of wild date palm (Phoenix sylvestris) in rural Bangladesh: an approach to sustainable biodiversity management. J For Res 19(3):245–251CrossRefGoogle Scholar
  18. Desktop, E. A. (2011). Release 10. Redlands, CA: Environmental Systems Research Institute, 437, 438Google Scholar
  19. Denton OA, Aduramigba-Modupe VO, Ojo AO, Adeoyolanu OD, Are KS, Adelana AO et al (2017) Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food & Agriculture 3(1):1279366CrossRefGoogle Scholar
  20. Duruz S, Flury C, Matasci G, Joerin F, Widmer I, Joost S (2017) A WebGIS platform for the monitoring of farm animal genetic resources (GENMON). PLoS One 12(4):e0176362PubMedPubMedCentralCrossRefGoogle Scholar
  21. Eaton D, Windig J, Hiemstra SJ, van Veller M, Tranch NX, Hao PX et al (2006) Indicators for livestock and crop biodiversity. Report.2006/05. CGN/DLO Foundation, Wageningen UR. WageningenGoogle Scholar
  22. El May Y, Dorge S, Jeguirim M, Trouvé G, Said R (2012) Measurement of gaseous and particulate pollutants during combustion of date palm wastes for energy recovery. Aerosol Air Qual Res 12(5):814–825CrossRefGoogle Scholar
  23. Elhoumaizi MA, Saaidi M, Oihabi A, Cilas C (2002) Phenotypic diversity of date-palm cultivars (Phoenix dactylifera L.) from Morocco. Genet Resour Crop Evol 49(5):483–490CrossRefGoogle Scholar
  24. Elias AA, Rabbi I, Kulakow P, Jannink JL (2018) Improving genomic prediction in cassava field experiments using spatial analysis. G3: Genes, Genomes, Genetics 8(1):53–62CrossRefGoogle Scholar
  25. Elmeer K, Sarwath H, Malek J, Baum M, Hamwieh A (2011) New microsatellite markers for assessment of genetic diversity in date palm (Phoenix dactylifera L.). 3 Biotech 1(2):91–97PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elshibli S, Korpelainen H (2008) Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan. Genetica 134(2):251–260PubMedCrossRefGoogle Scholar
  27. FAOSTAT F (2016) FAOSTAT statistical database. Available from: http://faostat3.fao.org/. Accessed November 2018
  28. Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT). 2015 Available from: http://faostat3.fao.org/download/Q/QC/E. Accessed 2017 March
  29. Gyulai G, Humphreys M, Lagler R, Szabo Z, Toth Z, Bittsánszky A et al (2006) Seed remains of common millet from the 4th (Mongolia) and 15th (Hungary) centuries: AFLP, SSR and mtDNA sequence recoveries. Seed Sci Res 16(3):179–191CrossRefGoogle Scholar
  30. Hagelamin OA, Alzahrani AMM (2015) Characterization and analysis of date palm (Phoenix dactylifera L.) karyotypes. Asia Life Sci 24:809–822Google Scholar
  31. Hanotte O, Bradley DG, Ochieng JW, Verjee Y, Hill EW, Rege JEO (2002) African pastoralism: genetic imprints of origins and migrations. Science 296(5566):336–339PubMedCrossRefGoogle Scholar
  32. Hasan M, Abdullah HM (2015) Plant genetic resources and traditional knowledge: emerging needs for conservation. In: Plant genetic resources and traditional knowledge for food security. Springer, Singapore, pp 105–120CrossRefGoogle Scholar
  33. Hijmans, R. J., Guarino, L., Jarvis, A., O’brien, R., Mathur, P., Bussink, C., ... & Rojas, E. (2005). Diva-GIS version 5.2. Published on the Internet http://diva-gis.org
  34. Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88(11):2101–2112PubMedCrossRefGoogle Scholar
  35. Jain SM (2011) Prospects of in vitro conservation of date palm genetic diversity for sustainable production. Emirates Journal of Food and Agriculture 23(2):110CrossRefGoogle Scholar
  36. Jarvis A, Ferguson ME, Williams DE, Guarino L, Jones PG, Stalker HT, Valls JFM, Pittman RN, Simpson CE, Bramel P (2003) Biogeography of wild Arachis. Crop Sci 43(3):1100–1108CrossRefGoogle Scholar
  37. Jubrael JM, Udupa SM, Baum M (2005) Assessment of AFLP-based genetic relationships among date palm (Phoenix dactylifera L.) varieties of Iraq. J Am Soc Hortic Sci 130(3):442–447Google Scholar
  38. Karim, M. R. (2006). Brackish-water shrimp cultivation threatens permanent damage to coastal agriculture in Bangladesh. Environment and livelihoods in tropical coastal zones: managing agriculture-fishery-aquaculture conflicts, 2, 61–71Google Scholar
  39. Khierallah H, Bader S, Baum M, Hamwieh A (2011) Assessment of genetic diversity for some Iraqi date palms (Phoenix dactylifera L.) using amplified fragment length polymorphisms (AFLP) markers. Afr J Biotechnol 10(47):9570–9576CrossRefGoogle Scholar
  40. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23(3):141–148PubMedCrossRefGoogle Scholar
  41. Kurup SS, Hedar YS, Al Dhaheri MA, El-Heawiety AY, Aly MA, Alhadrami G (2009) Morpho-physiological evaluation and RAPD markers-assisted characterization of date palm (Phoenix dactylifera L.) varieties for salinity tolerance. J Food Agric Environ 7(3):3–50Google Scholar
  42. Laurentin H (2009) Data analysis for molecular characterization of plant genetic resources. Genet Resour Crop Evol 56(2):277–292CrossRefGoogle Scholar
  43. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129CrossRefGoogle Scholar
  44. Lowe AJ, Gillies ACM, Wilson J, Dawson IK (2000) Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Mol Ecol 9(7):831–841PubMedCrossRefGoogle Scholar
  45. Maxted, N., Ford-Lloyd, B. V., & Hawkes, J. G. (2013). Plant genetic conservation: the in situ approach. Springer Science & Business MediaGoogle Scholar
  46. McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 122 p, 351 Google Scholar
  47. McRae BH (2006) Isolation by resistance. Evolution 60(8):1551–1561PubMedCrossRefGoogle Scholar
  48. Miah MY, Mannan MA, Quddus KG, Mahmud MAM, Baida T (2004) Salinity on cultivable land and its effects on crops. Pak J Biol Sci 7(8):1322–1326CrossRefGoogle Scholar
  49. Mirbabaee SA, Mardi M, Mahmoodi P, Pirseyedi SM, Abbasi A, Farsi M, Soleimani H, Bakhshikhaniki G, Mohajeri-Naraghi S, Zeinolabedini M, Khayam-Nekouei SM (2011) Development of new microsatellite markers from an enriched genomic library of date palm (Phoenix dactylifera L.). J Hortic Sci Biotechnol 86(5):539–541CrossRefGoogle Scholar
  50. Morton J (1987). Dates. In: Julia F. (ed) Morton fruits of warm climates. Miami Fl. pp 5–11 Google Scholar
  51. Moussouni S, Pintaud JC, Vigouroux Y, Bouguedoura N (2017) Diversity of Algerian oases date palm (Phoenix dactylifera L., Arecaceae): heterozygote excess and cryptic structure suggest farmer management had a major impact on diversity. PLoS One 12(4):e0175232PubMedPubMedCentralCrossRefGoogle Scholar
  52. Paul JM, Larsen D, Cox R (2018) Spatial analysis of groundwater chloride anomalies, earthquake sand-blows, and surface soils in the Mississippi River Valley alluvium in southeastern Arkansas. Groundwater for Sustainable Development 6:101–111CrossRefGoogle Scholar
  53. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6(1):288–295CrossRefGoogle Scholar
  54. Peter, B. M. (2016). Admixture, population structure and F-statistics. Genetics, genetics-115Google Scholar
  55. Perrier X, Jacquemoud-Collet JP. DARwin software. 2010. http://darwin.cirad.fr/
  56. Pillay AE, Williams JR, El Mardi MO, Al-Lawati SMH, Al-Hadabbi MH, Al-Hamdi A (2003) Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environ Int 29(5):541–545PubMedCrossRefGoogle Scholar
  57. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  58. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149(4):2007–2023PubMedPubMedCentralGoogle Scholar
  59. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–389PubMedCrossRefGoogle Scholar
  60. Salem BB (2003) Application of GIS to biodiversity monitoring. J Arid Environ 54(1):91–114CrossRefGoogle Scholar
  61. Sirisena S, Ng K, Ajlouni S (2015) The emerging Australian date palm industry: date fruit nutritional and bioactive compounds and valuable processing by-products. Compr Rev Food Sci Food Saf 14(6):813–823CrossRefGoogle Scholar
  62. Tanaka N, Jinadasa KBSN, Mowjood MIM, Fasly MSM (2011) Coastal vegetation planting projects for tsunami disaster mitigation: effectiveness evaluation of new establishments. Landsc Ecol Eng 7(1):127–135CrossRefGoogle Scholar
  63. Tengberg M (2012) Beginnings and early history of date palm garden cultivation in the Middle East. J Arid Environ 86:139–147CrossRefGoogle Scholar
  64. Trapnell DW, Hamrick JL (2005) Mating patterns and gene flow in the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 14(1):75–84PubMedCrossRefGoogle Scholar
  65. Udupa S, Baum M (2001) High mutation rate and mutational bias at (TAA) n microsatellite loci in chickpea (Cicer arietinum L.). Mol Gen Genomics 265(6):1097–1103CrossRefGoogle Scholar
  66. Valavanis, V. D. (Ed.). (2009). Essential fish habitat mapping in the Mediterranean (Vol. 203). Springer Science & Business MediaGoogle Scholar
  67. Van Zonneveld M, Scheldeman X, Escribano P, Viruel MA, Van Damme P, Garcia W et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS One 7(1):e29845PubMedPubMedCentralCrossRefGoogle Scholar
  68. Wellmann AP, Araya HE, Johnson DV (2007) Date palm cultivation in Chile and Peru (South America): current status and future prospects for development. Acta Hortic (736):71–75Google Scholar
  69. Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, al-Mssallem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5(9):e12762PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zehdi S, Sakka H, Rhouma A, Salem AOM, Marrakchi M, Trifi M (2004) Analysis of Tunisian date palm germplasm using simple sequence repeat primers. Afr J Biotechnol 3(4):215–219CrossRefGoogle Scholar
  71. Zehdi-Azouzi S, Cherif E, Moussouni S, Gros-Balthazard M, Abbas Naqvi S, Ludeña B et al (2015) Genetic structure of the date palm (Phoenix dactylifera) in the Old World reveals a strong differentiation between eastern and western populations. Ann Bot 116(1):101–112PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics and Plant BreedingBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
  2. 2.Department of Agroforestry and EnvironmentBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh

Personalised recommendations