Advertisement

Tree Genetics & Genomes

, 14:91 | Cite as

Linkage and association analysis of dihydrochalcones phloridzin, sieboldin, and trilobatin in Malus

  • Benjamin L. Gutierrez
  • Jie Arro
  • Gan-Yuan Zhong
  • Susan K. Brown
Original Article
  • 59 Downloads
Part of the following topical collections:
  1. Complex Traits

Abstract

Dihydrochalcones (DHCs) are a distinctive characteristic of Malus species, with phloridzin as the major DHC in most Malus species, including cultivated apple. DHCs in apple have unique chemical properties with commercial and nutritional value and may yield important insights into the evolution and physiology of apple. A few species produce sieboldin and trilobatin instead of phloridzin, and interspecific hybridization produce offspring with combinations of phloridzin, sieboldin, and trilobatin. Using Malus prunifolia PI 89816 as a common male parent, five F1 populations were developed to understand the genetic basis of these DHCs in Malus. We measured DHC content in each population and observed segregation into five distinct DHC profiles, which fit a model for three independently segregating loci. QTL associated with DHC content were identified on linkage groups 7 and 8 of the Malus genome using linkage analysis with a cross of NY-152 by M. prunifolia PI 589816 and association mapping with a Malus germplasm collection. In addition to DHC segregation, we observed variation in the relative proportions of phloridzin, sieboldin, and trilobatin. The QTL identified represent a critical step in understanding the genetic controllers of DHC content in Malus.

Keywords

Apple Dihydrochalcone (DHC) Genetic mapping Genotyping-by-sequencing (GBS) Malus Phloridzin Quantitative trait loci (QTL) 

Notes

Acknowledgements

We thank Kevin Maloney for his assistance in developing the F1 populations. Bill Srmack and Kevin Maloney helped maintain seedlings in the greenhouses and field. Julian Koob helped prepare HPLC samples for analysis. Michael Gore, Lailiang Cheng, and Gennaro Fazio offered suggestions to improve the quality of the research and writing. BG was supported through the USDA-ARS Pathways program. JA is a participant of the ORISE-ORAU Education and Training Program.

Funding information

Funding was provided by the USDA-ARS Plant Genetic Resources Unit in Geneva, NY.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2018_1304_MOESM1_ESM.pdf (246 kb)
Supplemental Fig. 1 Pedigree of five F1 populations, 13,427, 16,705, 16,708, 16,709, and 16,710 (dotted lines). Red boxes denote common pollen parent, M. prunifolia PI 589816. Seed parent listed on left, except at dashed line. (PDF 245 kb)
11295_2018_1304_MOESM2_ESM.pdf (7 kb)
Supplemental Fig. 2 Leaf phloridzin, sieboldin, trilobatin, and total dihydrochalcone content (mg/g) across five F1 populations (PDF 6 kb)
11295_2018_1304_MOESM3_ESM.pdf (5 kb)
Supplemental Fig. 3 Leaf phloridzin and trilobatin content (mg/g) variation by dihydrochalcone profiles P, PT, and SPT across all populations (PDF 5 kb)
11295_2018_1304_MOESM4_ESM.pdf (11 kb)
Supplemental Fig. 4 Scatterplot of leaf phloridzin (x-axis) and trilobatin (y-axis) content in population 13,427. DHC profiles PT (black) and SPT (red) form two distinct groups with different slopes, and correlation of phloridzin and trilobatin increases when determined within each profile separately than combined (PDF 10 kb)
11295_2018_1304_MOESM5_ESM.jpg (694 kb)
Supplemental Fig. 5 Leaf variation between select founders of F1 populations on 2.54 cm2 grids: from top left to bottom right, ‘Evereste’, ‘Red Jade’, PI 589816, and ‘Evereste’ × ‘Red Jade’ parents of 16,708, 16,709, and 16,710 (JPG 694 kb)

References

  1. Behzad S, Sureda A, Barreca D, Nabavi SF, Rastrelli L, Nabavi SM (2017) Health effects of phloretin: from chemistry to medicine. Phytochem Rev 16:527–533CrossRefGoogle Scholar
  2. Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton J-M, Durel C-E, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236CrossRefGoogle Scholar
  3. Cevik V, King GJ (2002) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945CrossRefGoogle Scholar
  4. Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12CrossRefGoogle Scholar
  5. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CrossRefGoogle Scholar
  6. Dare A, Hellens R (2013) RNA interference silencing of CHS greatly alters the growth pattern of apple (Malus x domestica). Plant Signal Behav 8:e25033CrossRefGoogle Scholar
  7. Dare AP, Tomes S, Cooney JM, Greenwood DR, Hellens RP (2013) The role of enoyl reductase genes in phloridzin biosynthesis in apple. Plant Physiol Biochem 72:54–61CrossRefGoogle Scholar
  8. Dare AP, Yauk Y-K, Tomes S, McGhie TK, Rebstock RS, Cooney JM, Atkinson RG (2017) Silencing a phloretin-specific glycosyltransferase perturbs both general phenylpropanoid biosynthesis and plant development. Plant J Cell Mol Biol 91:237–250CrossRefGoogle Scholar
  9. De Paepe D, Valkenborg D, Noten B, Servaes K, Diels L, Loose MD, Van Droogenbroeck B, Voorspoels S (2015) Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 11:739–752CrossRefGoogle Scholar
  10. Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake G, Diak R, Breen KC, Tustin DS, Costes E, Chagné D, Schaffer RJ, David KM (2012) A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol 12:7CrossRefGoogle Scholar
  11. Dong H-Q, Li M, Zhu F, Liu F-L, Huang J-B (2012) Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem 130:261–266CrossRefGoogle Scholar
  12. Dugé de Bernonville T, Guyot S, Paulin J-P, Gaucher M, Loufrani L, Henrion D, Derbré S, Guilet D, Richomme P, Dat JF, Brisset M-N (2010) Dihydrochalcones: implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71:443–452CrossRefGoogle Scholar
  13. Dugé de Bernonville T, Gaucher M, Guyot S, Durel C-E, Dat JF, Brisset M-N (2011) The constitutive phenolic composition of two Malus × domestica genotypes is not responsible for their contrasted susceptibilities to fire blight. Environ Exp Bot 74:65–73CrossRefGoogle Scholar
  14. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379CrossRefGoogle Scholar
  15. Evans K, James C (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183CrossRefGoogle Scholar
  16. Fan X, Zhang Y, Dong H, Wang B, Ji H, Liu X (2015) Trilobatin attenuates the LPS-mediated inflammatory response by suppressing the NF-κB signaling pathway. Food Chem 166:609–615CrossRefGoogle Scholar
  17. Fischer TC, Malnoy M, Hofmann T, Schwab W, Palmieri L, Wehrens R, Schuch LA, Müller M, Schimmelpfeng H, Velasco R, Martens S (2014) F1 hybrid of cultivated apple (Malus ×domestica) and European pear (Pyrus communis) with fertile F2 offspring. Mol Breed 34:817–828CrossRefGoogle Scholar
  18. Gaucher M, Dugé de Bernonville T, Guyot S, Dat JF, Brisset M-N (2013) Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro. Plant Physiol Biochem 72:178–189CrossRefGoogle Scholar
  19. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346CrossRefGoogle Scholar
  20. Gosch C, Halbwirth H, Kuhn J, Miosic S, Stich K (2009) Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Sci 176:223–231CrossRefGoogle Scholar
  21. Gosch C, Halbwirth H, Schneider B, Hölscher D, Stich K (2010a) Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2′-O-glucoside (phloridzin). Plant Sci 178:299–306CrossRefGoogle Scholar
  22. Gosch C, Halbwirth H, Stich K (2010b) Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71:838–843CrossRefGoogle Scholar
  23. Gosch C, Flachowsky H, Halbwirth H, Thill J, Mjka-Wittmann R, Treutter D, Richter K, Hanke M-V, Stich K (2012) Substrate specificity and contribution of the glycosyltransferase UGT71A15 to phloridzin biosynthesis. Trees 26:259–271CrossRefGoogle Scholar
  24. Gutierrez BL, Zhong G-Y, Brown SK (2018) Genetic diversity of dihydrochalcone content in Malus germplasm. Genet Resour Crop Evol 65:1485–1502CrossRefGoogle Scholar
  25. Hunter LD (1975) Phloridzin and apple scab. Phytochemistry 14:1519–1522CrossRefGoogle Scholar
  26. Hutabarat OS, Flachowsky H, Regos I, Miosic S, Kaufmann C, Faramarzi S, Alam MZ, Gosch C, Peil A, Richter K, Hanke M-V, Treutter D, Stich K, Halbwirth H (2016) Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Planta 243:1213–1224CrossRefGoogle Scholar
  27. Ibdah M, Berim A, Martens S, Valderrama ALH, Palmieri L, Lewinsohn E, Gang DR (2014) Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus × domestica Borkh. Phytochemistry 107:24–31CrossRefGoogle Scholar
  28. Jugdé H, Nguy D, Moller I, Cooney JM, Atkinson RG (2008) Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J 275:3804–3814CrossRefGoogle Scholar
  29. Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577CrossRefGoogle Scholar
  30. Khan SA, Chibon P-Y, de Vos RCH, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RGF, van de Weg E, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63:2895–2908CrossRefGoogle Scholar
  31. Kumar S, Garrick DJ, Bink MC, Whitworth C, Chagne D, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393–2164–14–393Google Scholar
  32. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  33. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399CrossRefGoogle Scholar
  34. McClure KA, Sawler J, Gardner KM, Money D, Myles S (2014) Genomics: a potential panacea for the perennial problem. Am J Bot 101:1780–1790CrossRefGoogle Scholar
  35. McClure KA, Gardner KM, Toivonen PM, Hampson CR, Song J, Forney CF, DeLong J, Rajcan I, Myles S (2016) QTL analysis of soft scald in two apple populations. Hortic Res 3:16043CrossRefGoogle Scholar
  36. Mikulič Petkovšek M, Stampar F, Veberic R (2008) Increased phenolic content in apple leaves infected with the apple scab pathogen. J Plant Pathol 90:49–55Google Scholar
  37. Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for non-model organisms. G3 Genes Genomes Genet 5:2383–2390Google Scholar
  38. Morimoto T, Banno K (2015) Genetic and physical mapping of Co, a gene controlling the columnar trait of apple. Tree Genet Genomes 11:1–11CrossRefGoogle Scholar
  39. Nair S, Ziaullah Z, Rupasinghe HV (2014) Phloridzin fatty acid esters induce apoptosis and alters gene expression in human liver cancer cells (261.2). FASEB J 28:261.2CrossRefGoogle Scholar
  40. Najafian M, Jahromi MZ, Nowroznejhad MJ, Khajeaian P, Kargar MM, Sadeghi M, Arasteh A (2012) Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol Biol Rep 39:5299–5306CrossRefGoogle Scholar
  41. Orcheski B, Parker R, Brown S (2015) Pale green lethal disorder in apple (Malus) is caused by a mutation in the PHYLLO gene which is essential for phylloquinone (vitamin K1) biosynthesis. Tree Genet Genomes 11:131CrossRefGoogle Scholar
  42. Peters G-J (2018) userfriendlyscience: Quantitative analysis made accessible. R Package Version 072 Httpuserfriendlysciencecom.  https://doi.org/10.17605/osf.io/txequ
  43. Puel C, Quintin A, Mathey J, Obled C, Davicco MJ, Lebecque P, Kati-Coulibaly S, Horcajada MN, Coxam V (2005) Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions. Calcif Tissue Int 77:311–318CrossRefGoogle Scholar
  44. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefGoogle Scholar
  45. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  46. Rihani KAL, Jacobsen H-J, Hofmann T, Schwab W, Hassan F (2017) Metabolic engineering of apple by overexpression of the MdMyb10 gene. J Genet Eng Biotechnol 15:263–273CrossRefGoogle Scholar
  47. Rivière C (2016) Dihydrochalcones: occurrence in the plant kingdom, chemistry and biological activities. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, 1st edn. Elsevier, pp 253–381Google Scholar
  48. Slatnar A, Mikulic-Petkovsek M, Halbwirth H, Stampar F, Stich K, Veberic R (2012) Polyphenol metabolism of developing apple skin of a scab resistant and a susceptible apple cultivar. Trees 26:109–119CrossRefGoogle Scholar
  49. Tang J, Tang L, Tan S, Zhou Z (2015) The study of variation of phloridzin content in six wild Malus species. J Food Nutr Res 3:146–151CrossRefGoogle Scholar
  50. Verdu CF, Guyot S, Childebrand N, Bahut M, Celton J-M, Gaillard S, Lasserre-Zuber P, Troggio M, Guilet D, Laurens F (2014) QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS One 9:e107103CrossRefGoogle Scholar
  51. Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z (2014) A SUPER powerful method for genome wide association study. PLoS One 9:e107684CrossRefGoogle Scholar
  52. Williams AH (1961) Dihydrochalcones of Malus species. J Chem Soc 155:4133–4136CrossRefGoogle Scholar
  53. Williams A, Jarrett J (1975) Hybridization of Malus. In: Report - Long Ashton Research Station 1974. University of Bristol, Bristol, p 44Google Scholar
  54. Xiao Z, Zhang Y, Chen X, Wang Y, Chen W, Xu Q, Li P, Ma F (2017) Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus ‘Red Splendor’ fruit. Food Chem 231:324–331CrossRefGoogle Scholar
  55. Yahyaa M, Davidovich-Rikanati R, Eyal Y, Sheachter A, Marzouk S, Lewinsohn E, Ibdah M (2016) Identification and characterization of UDP-glucose: phloretin 4′-O-glycosyltransferase from Malus x domestica Borkh. Phytochemistry 130:47–55CrossRefGoogle Scholar
  56. Yahyaa M, Ali S, Davidovich-Rikanati R, Ibdah M, Shachtier A, Eyal Y, Lewinsohn E, Ibdah M (2017) Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.). Phytochemistry 140:125–133CrossRefGoogle Scholar
  57. Yin C, Xiang L, Wang G, Wang Y, Shen X, Chen X, Mao Z (2017) Phloridzin promotes the growth of Fusarium moniliforme (Fusarium verticillioides). Sci Hortic 214:187–194CrossRefGoogle Scholar
  58. Zeileis A, Meyer D, Hornik K (2007) Residual-based shadings for visualizing (conditional) independence. J Comput Graph Stat 16:507–525CrossRefGoogle Scholar
  59. Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan MA, Zhou Y, Gu C, Zhang X, Han Z, Korban SS, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics 13:537CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Plant Breeding and Genetics Section, School of Integrative Plant Science, NYSAESCornell UniversityGenevaUSA
  2. 2.United States Department of Agriculture-Agricultural Research ServicePlant Genetic Resources UnitGenevaUSA

Personalised recommendations