Advertisement

Tree Genetics & Genomes

, 14:84 | Cite as

Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients

  • Laura Cuervo-Alarcon
  • Matthias Arend
  • Markus Müller
  • Christoph Sperisen
  • Reiner Finkeldey
  • Konstantin V. Krutovsky
Original Article
  • 194 Downloads
Part of the following topical collections:
  1. Adaptation

Abstract

European beech (Fagus sylvatica L.) is one of the most important forest tree species in Europe, and its genetic adaptation potential to climate change is of great interest. Saplings and adults from 12 European beech populations were sampled along two steep precipitation gradients in Switzerland. All individuals were genotyped at 13 microsatellite or simple sequence repeat (SSR) markers and 70 single nucleotide polymorphisms (SNPs) in 24 candidate genes potentially involved in stress response and phenology. Both SSR and SNP markers revealed high genetic diversity in the studied populations and low but statistically significant population differentiation. The SNPs were searched for FST outliers using three different methods implemented in LOSITAN, Arlequin, and BayeScan, respectively. Additionally, associations of the SNPs with environmental variables were tested by two methods implemented in Bayenv2 and Samβada, respectively. There were 14 (20%) SNPs in 12 (50%) candidate genes in the saplings and 9 (12.8%) SNPs in 7 (29.2%) candidate genes in the adults consistently identified by at least two of the five methods used, indicating that they are very likely under selection. Genes with SNPs showing signatures of selection are involved in a wide range of molecular functions, such as oxidoreductases (IDH), hydrolases (CysPro), transferases (XTH), transporters (KT2), chaperones (CP10), and transcription factors (DAG, NAC transcription factor). The obtained data will help us better understand the genetic variation underlying adaptation to environmentally changing conditions in European beech, which is of great importance for the development of scientific guidelines for the sustainable management and conservation of this important species.

Keywords

Adaptation Climate change Environmental association analysis Microsatellite Outlier analysis SNP 

Notes

Acknowledgments

We thank Florian Schreyer and Jhon Rivera-Monroy for their help in the fieldwork, and Alexandra Dolynska for her assistance in the laboratory. We also thank Hadrien Lalagüe for providing the SNP positions and haplotype sequences from his study to select the haplotype tag SNPs. We also thank COLFUTURO and the Administrative Department of Science, Technology and Innovation COLCIENCIAS for supporting Laura Cuervo-Alarcon during this study. We appreciate very much two anonymous reviewers for their thorough reviews that greatly helped us improve the manuscript.

Author’s contributions

LCA collected the samples, generated and analyzed the data, and wrote the manuscript. MA helped with the sample collection; MA, CS, KVK, and RF conceived and designed the study, developed the experimental plan, coordinated the research, and participated in the drafting of the manuscript. MM helped with data analysis, interpretation, and manuscript editing. All authors read and approved the final manuscript.

Funding information

This study was financially supported by the Swiss Federal Office for the Environment FOEN and the Swiss Federal Institute for Forest, Snow and Landscape Research WSL.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Data archiving statement

Genotype data corresponding to SSR and SNP markers were submitted to the TreeGenes Database (https://treegenesdb.org/Drupal; accession number: TGDR073).

Supplementary material

11295_2018_1297_MOESM1_ESM.docx (173 kb)
ESM 1 (DOCX 173 kb)
11295_2018_1297_MOESM2_ESM.docx (17.5 mb)
ESM 2 (DOCX 17881 kb)

References

  1. Ahrens CW, Rymer PD, Stow A, Bragg J, Dillon S, Umbers KDL, Dudaniec RY (2018) The search for loci under selection: trends, biases and progress. Mol Ecol 27:1342–1356.  https://doi.org/10.1111/mec.14549 CrossRefPubMedGoogle Scholar
  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111.  https://doi.org/10.1111/j.1752-4571.2007.00013.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alberto FJ, Derory J, Boury C, Frigerio J-M, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195:495–512.  https://doi.org/10.1534/genetics.113.153783 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684.  https://doi.org/10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  5. Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, Taberlet P, Brodbeck S, Gaudeul M, Gielly L, Küpfer P, Mansion G, Negrini R, Paun O, Pellecchia M, Rioux D, Schüpfer F, Van Loo M, Winkler M, Gugerli F, IntraBioDiv Consortium (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640.  https://doi.org/10.1111/j.1461-0248.2009.01312.x CrossRefPubMedGoogle Scholar
  6. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinformatics 9:323.  https://doi.org/10.1186/1471-2105-9-323 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh L-SL (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119.  https://doi.org/10.1093/nar/gkh131 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arend M, Gessler A, Schaub M (2016) The influence of the soil on spring and autumn phenology in European beech. Tree Physiol 36(1):78–85.  https://doi.org/10.1093/treephys/tpv087 CrossRefPubMedGoogle Scholar
  9. Asuka Y, Tani N, Tsumura Y, Tomaru N (2004) Development and characterization of microsatellite markers for Fagus crenata Blume. Mol Ecol Notes 4:101–103.  https://doi.org/10.1046/j.1471-8286.2003.00583.x CrossRefGoogle Scholar
  10. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791.  https://doi.org/10.1038/nrg1916 CrossRefPubMedGoogle Scholar
  11. Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69:3613–3634.  https://doi.org/10.1007/s00018-012-0990-9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baruck J, Nestroy O, Sartori G, Baize D, Traidl R, Vrščaj B, Bräm E, Gruber FE, Heinrich K, Geitner C (2016) Soil classification and mapping in the Alps: the current state and future challenges. Geoderma 264(Part B):312–331.  https://doi.org/10.1016/j.geoderma.2015.08.005 CrossRefGoogle Scholar
  13. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626.  https://doi.org/10.1098/rspb.1996.0237 CrossRefGoogle Scholar
  14. Begueria S, Vicente-Serrano SM (2017) SPEI: calculation of the standardised precipitation-evapotranspiration index. R package version 1.7 (https://cran.r-project.org/web/packages/SPEI)
  15. Belmonte J, Alarcón M, Avila A, Scialabba E, Pino D (2008) Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687.  https://doi.org/10.1007/s00484-008-0160-9 CrossRefPubMedGoogle Scholar
  16. Beniston M, Goyette S (2007) Changes in variability and persistence of climate in Switzerland: exploring 20th century observations and 21st century simulations. Glob Planet Chang 57:1–15.  https://doi.org/10.1016/j.gloplacha.2006.11.004 CrossRefGoogle Scholar
  17. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  18. Blair LM, Granka JM, Feldman MW (2014) On the stability of the Bayenv method in assessing human SNP-environment associations. Hum Genomics 8(1).  https://doi.org/10.1186/1479-7364-8-1
  19. Bontemps A, Klein EK, Oddou-Muratorio S (2013) Shift of spatial patterns during early recruitment in Fagus sylvatica: evidence from seed dispersal estimates based on genotypic data. For Ecol Manag 305:67–76.  https://doi.org/10.1016/j.foreco.2013.05.033 CrossRefGoogle Scholar
  20. Bugmann H, Brang P, Elkin C, Henne P, Jakoby O, Lévesque M, Lischke H, Psomas A, Rigling A, Wermelinger B, Zimmermann NE (2014) Climate change impacts on tree species, forest properties, and ecosystem services. Chapter 8 in Appenzeller C, Fischer EM, Fuhrer J, Grosjean M, Hohmann R, Joos F, Raible C, Ritz C (Coordinating Group). CH2014-Impacts. Toward quantitative scenarios of climate change impacts in Switzerland. OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, pp 79–88Google Scholar
  21. Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For Ecol Manag 247:98–106.  https://doi.org/10.1016/j.foreco.2007.04.018 CrossRefGoogle Scholar
  22. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7:98–108.  https://doi.org/10.1038/nrg1770 CrossRefPubMedGoogle Scholar
  23. Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, Clair JBS (2011) Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manag 261:1121–1142.  https://doi.org/10.1016/j.foreco.2010.12.040 CrossRefGoogle Scholar
  24. Christmas MJ, Biffin E, Breed MF, Lowe AJ (2016) Finding needles in a genomic haystack: targeted capture identifies clear signatures of selection in a non-model plant species. Mol Ecol 25:4216–4233.  https://doi.org/10.1111/mec.13750 CrossRefPubMedGoogle Scholar
  25. Coop G, Witonsky D, Rienzo AD, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423.  https://doi.org/10.1534/genetics.110.114819 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Crookston NL, Rehfeldt GE, Dixon GE, Weiskittel AR (2010) Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For Ecol Manag 260:1198–1211.  https://doi.org/10.1016/j.foreco.2010.07.013 CrossRefGoogle Scholar
  27. Csilléry K, Lalagüe H, Vendramin GG, González-Martínez SC, Fady B, Oddou-Muratorio S (2014) Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations. Mol Ecol 23:4696–4708.  https://doi.org/10.1111/mec.12902 CrossRefPubMedGoogle Scholar
  28. Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602.  https://doi.org/10.1111/j.1365-294X.2010.04656.x CrossRefPubMedGoogle Scholar
  29. De Mita S, Thuillet A-C, Gay L, Ahmadi N, Manel S, Ronfort J, Vigouroux Y (2013) Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol 22:1383–1399.  https://doi.org/10.1111/mec.12182 CrossRefPubMedPubMedCentralGoogle Scholar
  30. De Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23:2006–2019.  https://doi.org/10.1111/mec.12705 CrossRefPubMedGoogle Scholar
  31. Dell Inc (2015) Dell Statistica (data analysis software system), version 12. software.dell.com
  32. Ding K, Zhang J, Zhou K, Shen Y, Zhang X (2005) htSNPer1.0: software for haplotype block partition and htSNPs selection. BMC Bioinformatics 6:38.  https://doi.org/10.1186/1471-2105-6-38 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Durand J, Bodénès C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herrán A, Ikaran Z, Cabané C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de DA, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570.  https://doi.org/10.1186/1471-2164-11-570 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  35. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009) Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182:1289–1302.  https://doi.org/10.1534/genetics.109.102350 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010a) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805.  https://doi.org/10.1111/j.1365-294X.2010.04698.x CrossRefPubMedGoogle Scholar
  37. Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB (2010b) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185:969–982.  https://doi.org/10.1534/genetics.110.115543 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, CambridgeGoogle Scholar
  39. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132.  https://doi.org/10.1038/sj.hdy.6801001 CrossRefPubMedGoogle Scholar
  40. Emiliani G, Paffetti D, Vettori C, Giannini R (2004) Geographic distribution of genetic variability of Fagus sylvatica L. in southern Italian populations. For Genet Slovak Repub 11(3–4):231–237Google Scholar
  41. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  42. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298.  https://doi.org/10.1038/hdy.2009.74 CrossRefPubMedGoogle Scholar
  44. Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819.  https://doi.org/10.1111/j.1365-2699.2006.01533.x CrossRefGoogle Scholar
  45. Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Shimizu KK, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69.  https://doi.org/10.1186/s12864-016-3459-7 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993.  https://doi.org/10.1534/genetics.108.092221 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fu W, Akey JM (2013) Selection and adaptation in the human genome. Annu Rev Genomics Hum Genet 14:467–489.  https://doi.org/10.1146/annurev-genom-091212-153509 CrossRefPubMedGoogle Scholar
  48. Fyon F, Cailleau A, Lenormand T (2015) Enhancer runaway and the evolution of diploid gene expression. PLoS Genet 11:e1005665.  https://doi.org/10.1371/journal.pgen.1005665 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gärtner S, Reif A, Xystrakis F, Sayer U, Bendagha N, Matzarakis A (2008) The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany. J Veg Sci 19:757–768.  https://doi.org/10.3170/2008-8-18442 CrossRefGoogle Scholar
  50. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  51. Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116.  https://doi.org/10.1093/molbev/msq190 CrossRefPubMedGoogle Scholar
  52. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195(1):205–220.  https://doi.org/10.1534/genetics.113.152462 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807.  https://doi.org/10.1007/s10980-005-5245-9 CrossRefGoogle Scholar
  54. Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683.  https://doi.org/10.1016/j.tplants.2010.09.002 CrossRefPubMedGoogle Scholar
  55. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332.  https://doi.org/10.1111/j.1755-0998.2009.02591.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922.  https://doi.org/10.1111/j.1469-8137.2010.03593.x CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jahn G (1991) Temperate deciduous forests. In: Röhrig E, Ulrich B (eds) Ecosystems of the world. Elsevier, Amsterdam, pp 377–502Google Scholar
  58. Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  59. Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936.  https://doi.org/10.1111/j.1365-294X.2006.03203.x CrossRefPubMedGoogle Scholar
  60. Jump AS, Hunt JM, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480.  https://doi.org/10.1111/j.1365-294X.2006.03027.x CrossRefPubMedGoogle Scholar
  61. Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189.  https://doi.org/10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  62. Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12:3966–3988.  https://doi.org/10.3390/ijms12063966 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Komar AA (2007) Genetics. SNPs, silent but not invisible. Science 315:466–467.  https://doi.org/10.1126/science.1138239 CrossRefPubMedGoogle Scholar
  64. Konijnendijk N, Shikano T, Daneels D, Volckaert FAM, Raeymaekers JAM (2015) Signatures of selection in the three-spined stickleback along a small-scale brackish water–freshwater transition zone. Ecol Evol 5:4174–4186.  https://doi.org/10.1002/ece3.1671 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191.  https://doi.org/10.1111/1755-0998.12387 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Barros V, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1267–1326Google Scholar
  67. Kraj W, Sztorc A (2009) Genetic structure and variability of phenological forms in the European beech (Fagus sylvatica L.). Ann For Sci 66:203–203.  https://doi.org/10.1051/forest/2008085 CrossRefGoogle Scholar
  68. Krajmerová D, Hrivnák M, Ditmarová Ľ, Jamnická G, Kmeť J, Kurjak D, Gömöry D (2017) Nucleotide polymorphisms associated with climate, phenology and physiological traits in European beech (Fagus sylvatica L.). New For 48(3):463–477.  https://doi.org/10.1007/s11056-017-9573-9 CrossRefGoogle Scholar
  69. Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222.  https://doi.org/10.1016/j.foreco.2009.12.023 CrossRefGoogle Scholar
  70. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392.  https://doi.org/10.1111/j.1461-0248.2012.01746.x CrossRefPubMedPubMedCentralGoogle Scholar
  71. Krutovsky KV, Clair JBS, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658.  https://doi.org/10.1007/s11295-009-0216-y CrossRefGoogle Scholar
  72. Lalagüe H, Csilléry K, Oddou-Muratorio S, Safrana J, de QC, Fady B, González-Martínez SC, Vendramin GG (2014) Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France. Tree Genet Genomes 10:15–26.  https://doi.org/10.1007/s11295-013-0658-0 CrossRefGoogle Scholar
  73. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210.  https://doi.org/10.1093/nar/gkr1090 CrossRefPubMedGoogle Scholar
  74. Lefèvre S, Wagner S, Petit RJ, De Lafontaine G (2012) Multiplexed microsatellite markers for genetic studies of beech. Mol Ecol Resour 12:484–491.  https://doi.org/10.1111/j.1755-0998.2011.03094.x CrossRefPubMedGoogle Scholar
  75. Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195PubMedPubMedCentralGoogle Scholar
  76. Li J, Li H, Jakobsson M, Li S, Sjödin P, Lascoux M (2012) Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol Ecol 21:28–44.  https://doi.org/10.1111/j.1365-294X.2011.05308.x CrossRefPubMedGoogle Scholar
  77. Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–1046.  https://doi.org/10.1111/mec.13100 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Maliva R, Missimer T (2012) Aridity and drought. In: Arid lands water evaluation and management, 1st edn. Springer, Berlin, pp 21–39CrossRefGoogle Scholar
  79. Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835.  https://doi.org/10.1111/j.1365-294X.2010.04716.x CrossRefPubMedGoogle Scholar
  80. Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738.  https://doi.org/10.1111/j.1365-294X.2012.05656.x CrossRefPubMedPubMedCentralGoogle Scholar
  81. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606.  https://doi.org/10.1111/j.1654-1103.2002.tb02087.x CrossRefGoogle Scholar
  82. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18.  https://doi.org/10.1111/j.1755-0998.2010.02927.x CrossRefPubMedGoogle Scholar
  83. Meirmans PG, Tienderen PHV (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794.  https://doi.org/10.1111/j.1471-8286.2004.00770.x CrossRefGoogle Scholar
  84. Morin PA, Luikart G, Wayne RK, the SNP workshop group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216.  https://doi.org/10.1016/j.tree.2004.01.009 CrossRefGoogle Scholar
  85. Müller M (2013) A candidate gene-based association study to investigate potentially adaptive genetic variation in European beech (Fagus sylvatica L.). Dissertation, Georg-August-University GöttingenGoogle Scholar
  86. Müller M, Seifert S, Finkeldey R (2015a) Identification of SNPs in candidate genes potentially involved in bud burst in European beech (Fagus sylvatica L.). Silvae Genet 64:1–20CrossRefGoogle Scholar
  87. Müller M, Seifert S, Finkeldey R (2015b) A candidate gene-based association study reveals SNPs significantly associated with bud burst in European beech (Fagus sylvatica L.). Tree Genet Genomes 11:1–13.  https://doi.org/10.1007/s11295-015-0943-1 CrossRefGoogle Scholar
  88. Namroud M-C, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17:3599–3613.  https://doi.org/10.1111/j.1365-294X.2008.03840.x CrossRefPubMedPubMedCentralGoogle Scholar
  89. Narum SR, Hess JE (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194.  https://doi.org/10.1111/j.1755-0998.2011.02987.x CrossRefPubMedGoogle Scholar
  90. Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B (2011) Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 20:1997–2010.  https://doi.org/10.1111/j.1365-294X.2011.05039.x CrossRefPubMedGoogle Scholar
  91. Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vettori C (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. For Ecol Manag 284:34–44.  https://doi.org/10.1016/j.foreco.2012.07.026 CrossRefGoogle Scholar
  92. Pagani F, Raponi M, Baralle FE (2005) Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A 102:6368–6372.  https://doi.org/10.1073/pnas.0502288102 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pastorelli R, Smulders MJM, Van’T Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Mol Ecol Notes 3:76–78.  https://doi.org/10.1046/j.1471-8286.2003.00355.x CrossRefGoogle Scholar
  94. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  95. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110215 CrossRefGoogle Scholar
  97. Piedallu C, Gégout J-C, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Glob Ecol Biogeogr 22:470–482.  https://doi.org/10.1111/geb.12012 CrossRefGoogle Scholar
  98. Piotti A, Leonardi S, Buiteveld J, Geburek T, Gerber S, Kramer K, Vettori C, Vendramin GG (2012) Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 108:322–331.  https://doi.org/10.1038/hdy.2011.77 CrossRefPubMedGoogle Scholar
  99. Pluess AR, Määttänen K (2013) Characterization of eighteen novel microsatellite markers and multiplex PCR protocol for Fagus sylvatica. Conserv Genet Resour 5:311–314.  https://doi.org/10.1007/s12686-012-9791-6 CrossRefGoogle Scholar
  100. Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS One 7:e33636.  https://doi.org/10.1371/journal.pone.0033636 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S (2016) Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. New Phytol 210:589–601.  https://doi.org/10.1111/nph.13809 CrossRefPubMedGoogle Scholar
  102. Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, Rioux D, Thuiller W, Aubert S, Manel S (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907.  https://doi.org/10.1111/j.1365-294X.2010.04696.x CrossRefPubMedGoogle Scholar
  103. Pritchard JK, Di Rienzo A (2010) Adaptation—not by sweeps alone. Nat Rev Genet 11:665–667.  https://doi.org/10.1038/nrg2880 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  105. Prunier J, Laroche J, Beaulieu J, Bousquet J (2011) Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Mol Ecol 20:1702–1716.  https://doi.org/10.1111/j.1365-294X.2011.05045.x CrossRefPubMedGoogle Scholar
  106. Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J (2013) The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics 14:368.  https://doi.org/10.1186/1471-2164-14-368 CrossRefPubMedPubMedCentralGoogle Scholar
  107. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  108. Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). For Ecol Manag 319:138–149.  https://doi.org/10.1016/j.foreco.2014.02.003 CrossRefGoogle Scholar
  109. Rajora OP, Eckert AJ, Zinck JWR (2016) Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS ONE 11(7):e0158691CrossRefPubMedPubMedCentralGoogle Scholar
  110. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  111. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370.  https://doi.org/10.1111/mec.13322 CrossRefPubMedGoogle Scholar
  112. Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R, Bodénès C, Sperisen C, Kremer A, Gugerli F (2016) Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol Ecol 25:5907–5924.  https://doi.org/10.1111/mec.13889 CrossRefPubMedGoogle Scholar
  113. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  114. Russello MA, Kirk SL, Frazer KK, Askey PJ (2012) Detection of outlier loci and their utility for fisheries management. Evol Appl 5:39–52.  https://doi.org/10.1111/j.1752-4571.2011.00206.x CrossRefPubMedGoogle Scholar
  115. Sander T, König S, Rothe GM, Janssen A, Weisgerber H (2000) Genetic variation of European beech (Fagus sylvatica L.) along an altitudinal transect at Mount Vogelsberg in Hesse, Germany. Mol Ecol 9:1349–1361CrossRefPubMedGoogle Scholar
  116. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43:23–43.  https://doi.org/10.1146/annurev-ecolsys-110411-160248 CrossRefGoogle Scholar
  117. Seifert S (2012) Variation of candidate genes related to climate change in European beech (Fagus sylvatica L.). Dissertation, Georg-August-University GöttingenGoogle Scholar
  118. Seifert S, Vornam B, Finkeldey R (2012) A set of 17 single nucleotide polymorphism (SNP) markers for European beech (Fagus sylvatica L.). Conserv Genet Resour 4:1045–1047.  https://doi.org/10.1007/s12686-012-9703-9 CrossRefGoogle Scholar
  119. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629.  https://doi.org/10.1111/j.1461-0248.2006.00889.x CrossRefPubMedGoogle Scholar
  120. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19:3806–3823.  https://doi.org/10.1111/j.1365-294X.2010.04726.x CrossRefPubMedGoogle Scholar
  121. Stephan W (2016) Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol Ecol 25:79–88.  https://doi.org/10.1111/mec.13288 CrossRefPubMedGoogle Scholar
  122. Stucki S, Orozco-terWengel P, Forester BR, Duruz S, Colli L, Masembe C, Negrini R, Landguth E, Jones MR, The NEXTGEN Consortium, Bruford MW, Taberlet P, Joost S (2017) High performance computation of landscape genomic models including local indicators of spatial association. Mol Ecol Resour 17(5):1072–1089.  https://doi.org/10.1111/1755-0998.12629 CrossRefPubMedGoogle Scholar
  123. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94.  https://doi.org/10.2307/210739 CrossRefGoogle Scholar
  124. Tigano A, Friesen VL (2016) Genomics of local adaptation with gene flow. Mol Ecol 25:2144–2164.  https://doi.org/10.1111/mec.13606 CrossRefPubMedGoogle Scholar
  125. Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47:123–138CrossRefGoogle Scholar
  126. Tsumura Y, Uchiyama K, Moriguchi Y, Kimura MK, Ueno S, Ujino-Ihara T (2014) Genetic differentiation and evolutionary adaptation in Cryptomeria japonica. G3 Genes Genomes Genetics 4:2389–2402.  https://doi.org/10.1534/g3.114.013896 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  128. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55.  https://doi.org/10.1016/j.tibtech.2004.11.005 CrossRefPubMedGoogle Scholar
  129. Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120.  https://doi.org/10.1146/annurev-genet-111212-133526 CrossRefPubMedGoogle Scholar
  130. Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conserv Genet 5:561–570.  https://doi.org/10.1023/B:COGE.0000041025.82917.ac CrossRefGoogle Scholar
  131. Weber P, Pluess A, Mühlethaler U (2011) Genetic resources of beech in Switzerland. In: Frydl J, Novotny P, Fennessy J, von Wühlisch G (eds) COST Action E 52 Genetic resources of beech in Europe—current state. Johann Heinrich von Thünen-Institut, Braunschweig, pp 248–255Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forest Genetics and Forest Tree BreedingGeorg-August University of GöttingenGöttingenGermany
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  3. 3.Department of Environmental SciencesUniversity of BaselBaselSwitzerland
  4. 4.University of KasselKasselGermany
  5. 5.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  6. 6.Laboratory of Forest Genomics, Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  7. 7.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA

Personalised recommendations