Advertisement

Tree Genetics & Genomes

, 14:68 | Cite as

Unraveling the genetic background of the Yangambi Research Center cacao germplasm collection, DR Congo

  • Hayley Rottiers
  • Helena Everaert
  • Pascal Boeckx
  • Gaston Limba
  • Geert Baert
  • Jocelyn De Wever
  • Kevin Maebe
  • Guy Smagghe
  • Koen Dewettinck
  • Kathy Messens
Original Article
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

The Democratic Republic of the Congo (DR Congo or DRC) has some of the most fertile soils in Africa to cultivate cacao, an important cash crop and source of income for many smallholder farmers. Although cacao is currently produced there on small scale, DRC has the potential to grow as a cacao-producing country, thereby supplying the increasing cacao demand in the global market. Since the introduction of cacao varieties in the late nineteenth century, selection and breeding experiments have been carried out based on phenotype, without any knowledge on the genetic background of the cultivars. Therefore, this study analyzes 62 Congolese accessions of the Centre de Recherche de Yangambi (CRY) and 51 accessions of international collections representing 10 reference groups and Trinitario cultivars using 14 microsatellite markers. Descriptive statistics revealed a high gene diversity and polymorphic information content (PIC) for most of the markers, of which mTcCIR 12, 37, and 60 were the most discriminative. Both Bayesian clustering and principal coordinate analysis (PCoA) revealed high-admixed ancestry of the CRY cultivars. The collection was divided in two clusters, of which the first formed a hybrid population, linked to Amelonado, Trinitario, Marañόn, and Nanay, and the second was assigned to predominantly Amelonado, followed by Nanay, Contamana, and Nacional. This high admixture level resulted from numerous hybridization and recombination events that took place in the previous century. The obtained knowledge is essential for efficient conservation, utilization, and selection of high-quality cacao cultivars, which are agronomical favored, disease resistant, and of superior flavor quality.

Keywords

Theobroma cacao L. Democratic Republic of the Congo Genetic diversity Population structure Microsatellite markers 

Notes

Acknowledgments

We would like to thank Filip Vandelook and Ann Bogaert from the Botanic Garden Meise for the technical assistance during the sampling of Congolese cacao leaves. Further, we are grateful to Daniel Kadow and Centro Agronόmico Tropical de Investigaciόn y Enseñanza (CATIE), Center for Forestry Research and Technology Transfer (CEFORTT), and International Cocoa Quarantine Centre (ICQC), for providing reference leaf samples.

Funding Information

This research received financial support from BOF (Special Research Fund) of Ghent University (PhD grant)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2018_1285_MOESM1_ESM.docx (682 kb)
ESM 1 (DOCX 682 kb)

References

  1. Afoakwa EO (2016) Chocolate science and technology. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  2. Aikpokpodion PO (2012) Defining genetic diversity in the chocolate tree, Theobroma cacao L. Grown in West and Central Africa. Genetic Diversity in Plants, InTechGoogle Scholar
  3. Aikpokpodion PO, Kolesnikova-Allen M, Adetimirin VO, Guiltinan MJ, Eskes AB, Motamayor JC, Schnell R (2008) Population structure and molecular characterization of Nigerian field Genebank collections of cacao, Theobroma cacao L. Silvae Genetica 59(6):273–285Google Scholar
  4. Aikpokpodion PO, Motamayor JC, Adetimirin VO, Adu-Ampomah Y, Ingelbrecht I, Eskes AB, Schnell RJ, Kolesnikova-Allen M (2009) Genetic diversity assessment of sub-samples of cacao, Theobroma cacao L. collections in West Africa using simple sequence repeats marker. Tree Genet Genomes 5:699–711CrossRefGoogle Scholar
  5. ALGEMEEN RIJKSARCHIEF (ARA) (n.d.) Archief van het Nationaal Instituut voor de landbouwkunde in Belgisch Congo (NILCO), I546Google Scholar
  6. Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products-an overview. Compr Rev Food Sci Food Saf 15:73–91CrossRefGoogle Scholar
  7. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D'Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101–108CrossRefPubMedGoogle Scholar
  8. ASSECCAF (2017) ASSECCAF Cacao Congo. http://asseccaf-cacao.blogspot.be. Accessed 8 Sep 2017
  9. Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI Publishing, WallingfordCrossRefGoogle Scholar
  10. Boza EJ, Irish BM, Meerow AW, Tondo CL, Rodríguez OA, Venture-López M, Gómez JA, Moore JM, Zhang D, Motamayor JC, Schnell RJ (2013) Genetic diversity, conservation, and utilization of Theobroma cacao L.: genetic resources in the Dominican Republic. Genet Resour Crop Evol 60:605–619CrossRefGoogle Scholar
  11. Cheesman E (1944) Notes on the nomenclature, classification and possible relationships of cacao populations. Trop Agric 21:144–159Google Scholar
  12. Cryer NC, Fenn MGE, Turnbull CJ, Wilkinson MJ (2006) Allelic size standards and reference genotypes to unify international cocoa (Theobroma cacao L.) microsatellite data. Genet Resour Crop Evol 53:1643–1652CrossRefGoogle Scholar
  13. Cuatrecasas J (1964) Cacao and its allies: a taxonomic revision of the genus Theobroma. Contributions to the U.S. Natural Herbarium 35(6):379–614Google Scholar
  14. De Beule H, Jassogne L, van Asten P (2014) Cocoa: driver of deforestation in the Democratic Republic of the Congo? CCAFS working paper no. 65. CGIAR research program on climate change, agriculture and food security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org
  15. Deheuvels O, Decazy B, Perez R, Roche G, Amores F (2004) The first Ecuadorean ‘Nacional’ cocoa collection based on organoleptic characteristics. Trop Sci 44:23–27CrossRefGoogle Scholar
  16. Earl D, VonHoldt B (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  17. ECI (2016) Success stories: Growing Congo's Cocoa. http://www.easterncongo.org/success-stories/growing-congos-cocoa. Accessed 9 Sep 2017
  18. Efombagn MIB, Sounigo O, Nyassé S, Manzanares-Dauleux MJ, Cilas C, Eskes AB, Kolesnikova-Allen M (2006) Genetic diversity in cocoa germplasm of southern Cameroon revealed by simple sequences repeat (SSRs) markers. Afr J Biotechnol 5(16):1441–1449Google Scholar
  19. Efombagn MIB, Nyassé S, Sounigo O, Kolesnikova-Allen M, Eskes AB (2007) Participatory cocoa (Theobroma cacao) selection in Cameroon: Phytophthora pod rot resistant accessions identified in farmers’ fields. Crop Prot 26:1467–1473CrossRefGoogle Scholar
  20. Efombagn MIB, Motamayor JC, Sounigo O, Eskes AB, Nyassé S, Cilas C, Schnell R, Manzanares-Dauleux M, Kolesnikova-Allen M (2008) Genetic diversity and structure of farm and GenBank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genet Genomes 4:821–831CrossRefGoogle Scholar
  21. End M, Daymond A Hadley P (2014) Technical guidelines for the safe movement of cacao germplasm (Revised from the FAO/IPGRI Technical guidelines no. 20, second update, August 2014). Global cacao genetic resources network (CacaoNet), Bioversity International, Montpellier, France. Bioversity InternationalGoogle Scholar
  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  23. Everaert H, Rottiers H, Pham PHD, Ha LTV, Nguyen TPD, Tran PD, De Wever J, Maebe K, Smagghe G, Dewettinck K, Messens K (2017) Molecular characterization of Vietnamese cocoa genotypes (Theobroma cacao L.) using microsatellite markers. Tree Genet Genomes 13:99CrossRefGoogle Scholar
  24. Franzen M, Mulder MB (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849CrossRefGoogle Scholar
  25. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372CrossRefPubMedGoogle Scholar
  26. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefPubMedPubMedCentralGoogle Scholar
  27. ICCO (2017) Quarterly bulletin of cocoa statistics vol XLIII. International Cocoa Organization ICCO. https://www.icco.org/about-us/international-cocoa-agreements/cat_view/30-relateddocuments/46-statistics-production.html. Accessed 30 June 2017
  28. Kadow D, Bohlmann J, Phillips W, Lieberei R (2013) Identification of main fine flavour components in two genotypes of the cocoa tree (Theobroma cacao L.). J Appl Bot Food Qual 86:90–98Google Scholar
  29. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  30. Kerckhofs S, Segers Y (2014) Crisis in de tropen. Landbouwpolitiek en agrarische wetenschap in Belgisch Congo (c. 1900-1940). In: Blondé B, Greefs H, Van Damme I, Van Ginderachter M, de Smaele H (eds) Overheid en economie. Geschiedenissen van een spanningsveld. University Press Antwerp, AntwerpenGoogle Scholar
  31. Kibriya S, Partidab V, Kingc J, Priced E (2014) Conflict resistant agribusiness in Democratic Republic of Congo. International food and agribusiness management review 17Google Scholar
  32. Kongor JE, Hinneh M, de Walle DV, Afoakwa EO, Boeckx P, Dewettinck K (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile - a review. Food Res Int 82:44–52CrossRefGoogle Scholar
  33. Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet A, Lagoda PJL (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 8:2141–2152CrossRefPubMedGoogle Scholar
  34. Marshall T, Slate J, Kruuk L, Pemberton J (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655CrossRefPubMedGoogle Scholar
  35. Martínez IB, Riera Nelson M, Flamand M-C, Bertin P (2014) Genetic diversity and population structure of anciently introduced Cuban cacao Theobroma cacao plants. Genet Resour Crop Evol 62:67–84CrossRefGoogle Scholar
  36. Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386CrossRefPubMedGoogle Scholar
  37. Motamayor JC, Lachenaud P, da Silva EMJW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L.). PLoS One 3(10):e3311CrossRefPubMedPubMedCentralGoogle Scholar
  38. Opoku SY, Bhattacharjee R, Kolesnikova-Allen M, Motamayor JC, Schnell R, Ingelbrecht I, Enu-Kwesi L, Adu-Ampomah Y (2007) Genetic diversity in cocoa (Theobroma cacao L.) germplasm collection from Ghana. J Crop Improv 20:73–87CrossRefGoogle Scholar
  39. Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  40. Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pokou ND, N’Goran JAK, Lachenaud P, Eskes AB, Motamayor JC, Schnell R, Kolesnikova-Allen M, Clément D, Sangaré A (2009) Recurrent selection of cocoa populations in Côte d’Ivoire: comparative genetic diversity between the first and second cycles. Plant Breed 128:514–520CrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  43. Saunders JA, Mischke S, Leamy EA, Hemeida AA (2004) Selection of international molecular standards for DNA fingerprinting of Theobroma cacao. Theor Appl Genet 110:41–47CrossRefPubMedGoogle Scholar
  44. Sereno ML, Albuquerque PSB, Vencovsky R, Figueira A (2006) Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated by microsatellite markers. Conserv Genet 7:13–24CrossRefGoogle Scholar
  45. TheoChocolate (2017) Congolese cocoa. http://theochocolate.com/blog/congolese-cocoa. Accessed 9 Sep 2017
  46. Trognitz B, Scheldeman X, Hansel-Hohl K, Kuant A, Grebe H, Hermann M (2011) Genetic population structure of cacao plantings within a young production area in Nicaragua. PLoS One 6:e16056CrossRefPubMedPubMedCentralGoogle Scholar
  47. Turnbull CJ, Hadley P (2017) International cocoa germplasm database (ICGD). [online database]. CRA ltd./ICE futures Europe/University of Reading, UK. http://www.icgd.reading.ac.uk. Accessed 15 Augustus 2017
  48. Van Himme M (1974) Rapport de mission au groupe cacaoyer des stations INERA de Bongabo et YangambiGoogle Scholar
  49. Zhang D, Boccara M, Motilal L, Butler DR, Umaharan P, Mischke S, Meinhardt L (2007) Microsatellite variation and population structure in the “Refractario” cacao of Ecuador. Conserv Genet 9:327–337CrossRefGoogle Scholar
  50. Zhang D, Boccara M, Motilal L, Mischke S, Johnson ES, Butler DR, Bailey B, Meinhardt L (2009) Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Upper Amazon using microsatellite DNA markers. Tree Genet Genomes 5:595–607CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory AgriFing, Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Laboratory of Food Technology and Engineering, Department of Food technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  3. 3.Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  4. 4.Centre de Recherche de Yangambi, Institut National pour l’Etude et la Recherche AgronomiquesYangambiDemocratic Republic of the Congo
  5. 5.Department of Environment, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  6. 6.Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations