Tree Genetics & Genomes

, 14:69 | Cite as

Genomic structure, QTL mapping, and molecular markers of lipase genes responsible for palm oil acidity in the oil palm (Elaeis guineensis Jacq.)

  • Hubert Domonhédo
  • Teresa Cuéllar
  • Sandra Espeout
  • Gaëtan Droc
  • Marilyne Summo
  • Ronan Rivallan
  • David Cros
  • Bruno Nouy
  • Alphonse Omoré
  • Léifi Nodichao
  • Vincent Arondel
  • Corneille Ahanhanzo
  • Norbert BillotteEmail author
Original Article
Part of the following topical collections:
  1. Complex Traits


The degradation of triglycerides in oil palm fruit due to an endogenous lipase in the pulp is the main reason for acidification of palm oil, which causes major economic losses and is currently mainly associated with the FLL1 gene. We designed this study to identify all the major genes controlling differences in acidity and lipase activity in the oil palm fruit mesocarp and determine a molecular markers kit to allow marker-assisted selection of commercial varieties with low acidity. Not only one gene (FLL1) but three closely linked genes including FLL1 were found and characterized in LM2T_EgCIR184O12c, a bacterial artificial chromosome sequence of 231 kb. Intra-gene PCR-based markers were designed for these genes. A QTL gene co-localization analysis for oil acidity (percentage of fatty acids released) was performed on two mapping populations. It evidenced a single major QTL at our lipase gene loci, explaining 84 to 92% of phenotypic variation, and validating the main genetic control of palm oil acidification by FLL1 and/or by the two new lipase genes. The three lipase genes had high homology to demonstrated triacylglycerol lipases. While FLL1 shows the highest expression levels, the two other genes may also contribute to oil acidity. Our molecular markers of lipase genes and the associated major QTL is an important step towards marker-assisted selection of commercial varieties with low acidity.


E. guineensis Palm oil acidity Lipase QTL FLL1 



Hubert Domonhedo is a recipient of the French Embassy SCAC scholarship and the West Africa Agricultural Productivity Program (WAAPP) fellowship. The authors are grateful to the CRA-PP of INRAB for providing the plant samples and phenotypic data. We would also like to thank the Ivory Coast’s Centre National de Recherche Agronomique (CNRA) for providing the LM2T oil palm leaf material previously used to construct the oil palm BAC library. We would furthermore like to express our gratitude to the reviewers of this journal for their corrections and kind help in improving this article. Finally, we are grateful to Dr. Fabienne Morcillo (IRD, France) for providing the PCR primers for the probes of candidate gene FLL1.


This study was funded by the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), PalmElit S.A.S., and the Centre de Recherches Agricoles Plantes Pérennes (CRA-PP) of the Institut National des Recherches Agricoles du Bénin (INRAB).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11295_2018_1284_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 36 kb)
11295_2018_1284_MOESM2_ESM.docx (95 kb)
ESM 2 (DOCX 95 kb)
11295_2018_1284_MOESM3_ESM.docx (40 kb)
ESM 3 (DOCX 40 kb)
11295_2018_1284_MOESM4_ESM.docx (104 kb)
ESM 4 (DOCX 103 kb)
11295_2018_1284_MOESM5_ESM.docx (705 kb)
ESM 5 (DOCX 704 kb)
11295_2018_1284_MOESM6_ESM.docx (35 kb)
ESM 6 (DOCX 34 kb)
11295_2018_1284_MOESM7_ESM.docx (170 kb)
ESM 7 (DOCX 169 kb)
11295_2018_1284_MOESM8_ESM.docx (35 kb)
ESM 8 (DOCX 34 kb)
11295_2018_1284_MOESM9_ESM.docx (742 kb)
ESM 9 (DOCX 741 kb)
11295_2018_1284_MOESM10_ESM.docx (117 kb)
ESM 10 (DOCX 117 kb)


  1. Abigor DR, Opoku RA, Opute FI, Osagie AU (1985) Partial purification and some properties of the lipase present in oil palm (Elaeis guineensis) mesocarp. J Sci Food Agric 36:599–606CrossRefGoogle Scholar
  2. Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC (2001) Development, characterisation and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 44:413–425. CrossRefPubMedGoogle Scholar
  3. Billotte N, Marseillac N, Risterucci A-M, Adon B, Brottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765. CrossRefPubMedGoogle Scholar
  4. Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. PNAS 108:12527–12532. CrossRefPubMedGoogle Scholar
  6. Cadena T, Prada F, Aidé P, Romero HM (2013) Lipase activity, mesocarp oil content, and iodine value in oil palm fruits of Elaeis guineensis, Elaeis oleifera, and the interspecific hybrid O × G (E. oleifera × E. guineensis). J Sci Food Agric 93:674–680. CrossRefPubMedGoogle Scholar
  7. Churchill G, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  8. Codex Alimentarius/FAO/WHO (2005) Norme alimentaire pour huiles et graisses. CODEX-STAN 210Google Scholar
  9. Corley RHV, Tinker PB (2016) The oil palm, Fifth edn. John Wiley & Sons, Ltd., OxfordGoogle Scholar
  10. Dapprich J, Feriola D, Mackiewicz K et al (2016) The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genomics 17:486. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dereeper A, Argout X, Billot C, Rami JF, Ruiz M (2007) SAT, a flexible and optimized web application for SSR marker development. BMC Bioinformatics 8:465CrossRefPubMedPubMedCentralGoogle Scholar
  12. Derewenda Z (1994) Structure and function of lipases. Adv Protein Chem 45:1–52CrossRefPubMedGoogle Scholar
  13. Desassis A (1957) L’acidification de l’huile de palme. Oleagineux 12:525–534Google Scholar
  14. Durand-Gasselin T, Billotte N, Pomies V, et al (2009) ID checking by microsatellite type markers (SSR) during the oil palm variety selection and production processes. In: “International seminar on oil palm genomics and its application to oil palm breeding.” ISOPB (The International Society for Oil Palm Breeders) conferences, Kuala Lumpur Convention Centre Malaysia. pp 1–8Google Scholar
  15. Eastmond PJ (2004) Cloning and characterization of the acid lipase from castor beans. J Biol Chem 279:45540–45545. CrossRefPubMedGoogle Scholar
  16. Eastmond PJ (2006) SUGAR-DEPENDENT1 encodes a Patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell 18:665–675. CrossRefPubMedPubMedCentralGoogle Scholar
  17. El-Kouhen K, Blangy S, Ortiz E et al (2005) Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett 579:6067–6073CrossRefPubMedGoogle Scholar
  18. Elshire R, Glaubitz J, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gibon V, de Greyt W, Kellens M (2007) Palm oil refining. Eur J Lipid Sci Tech 109:315–335CrossRefGoogle Scholar
  20. Haldane J (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  21. Jeong M-J, Shih M-C (2003) Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys Res Commun 300:555–562CrossRefPubMedGoogle Scholar
  22. Li-beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-Lipid Metabolism. Arab B 11:e0161. CrossRefGoogle Scholar
  23. Likeng-Li-Ngue BC, Bell JM, Ngando-Ebongue GF, Ntsomboh GN, Ngalle HB (2016) Genetic determinism of oil acidity among some DELI oil palm (Elaeis guineensis Jacq.) progenies. Afr J Biotechnol 15(34):1841–1845CrossRefGoogle Scholar
  24. Montoya C, Lopes R, Flori A et al (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B. K.) Cortés and oil palm (Elaeis guineensis Jacq.). Tree genet genomes. CrossRefGoogle Scholar
  25. Morcillo F, Cros D, Billotte N, Ngando-Ebongue GF, Domonhédo H, Pizot M, Cuéllar T, Espéout S, Dhouib R, Bourgis F, Claverol S, Tranbarger TJ, Nouy B, Arondel V (2013) Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat Commun doi 4:2160. CrossRefGoogle Scholar
  26. Ngando Ebongue GF (2009) Etude de la lipase endogène du mésocarpe du fruit du palmier à huile (Elaeis guineensis Jacq.) : Application à la sélection de lignées à faible acidité de l’huile. Thèse de Doctorat de Université Victor Segalen Bordeaux 2.137 pGoogle Scholar
  27. Ngando Ebongue G-F, Dhouib R, Carrière F, Amvam Zollo PH, Arondel V (2006) Assaying lipase activity from oil palm fruit (Elaeis guineensis Jacq.) mesocarp. Plant Physiol Biochem 44:611–617. CrossRefPubMedGoogle Scholar
  28. Ngando Ebongue FG, Koona P, Nouy B et al (2008) Identification of oil palm breeding lines producing oils with low acid values. Eur J Lipid Sci Technol 110:505–509. CrossRefGoogle Scholar
  29. Nurniwalis AW, Siti Nor Akmar A, Chan PL, Manaf MA (2007) Isolation of a cDNA encoding a lipase class 3 family protein from oil palm (Elaeis guineensis Jacq.). In: Proceedings of the PIPOC 2007 International palm oil congress “Agriculture, Biotechnology & Sustainability.” pp 1011–1020Google Scholar
  30. Nurniwalis AW, Suhaimi N, Siti Nor Akmar A et al (2008) Gene discovery via expressed sequence tags from the oil palm (Elaeis guineensis Jacq.) mesocarp. J Oil Palm Res 2:87–96Google Scholar
  31. Nurniwalis AW, Zubaidah R, Siti Nor Akmar A, Zulkifli H, Mohamad Arif MA, Massawe FJ, Chan KL, Parveez GKA (2015) Genomic structure and characterization of a lipase class 3 gene and promoter from oil palm. Biol Plant 59:227–236CrossRefGoogle Scholar
  32. Ollis D, Cheah E, Cygler M et al (1992) The a/b hydrolase fold. Protein Eng 5:197–211CrossRefPubMedGoogle Scholar
  33. Piffanelli P, Lagoda P, Clément D, et al (2002) Bactrop: A BAC-based platform for physical mapping of tropical species. In: Plant, Animal and Microbe Genomes 10th Conference, San Diego (California, USA), 12–16 janvier 2002Google Scholar
  34. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and constructions of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 224:645–654Google Scholar
  35. Roy R, Steffens DL, Gartside B, Jang GY, Brumbaugh JA (1996) Producing STR locus patterns from bloodstains and other forensic samples using an infrared fluorescent automated DNA sequencer. J Forensic Sci 41:418–424CrossRefPubMedGoogle Scholar
  36. Sambanthamurthi R, Oo KC, Parman SH (1995) Factors affecting lipase activity in Elaeis guineensis mesocarp. Plant Physiol Biochem 33: 353–359Google Scholar
  37. Sambanthamurthi R, Rajanaidu N, Parman SH (2000) Screening for lipase activity in the oil palm. Biochem Soc Trans 28:769–770CrossRefPubMedGoogle Scholar
  38. Shiex T, Gaspin C (1997) Cartagene: constructing and joining maximum likelihood genetic maps. In: proceedings of the 5th international conference on intelligent systems Mol biol. Halkidiki, Greece. 21-26 Juin 1997Google Scholar
  39. Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi S–E, Chan KL, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500:335–339. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tranbarger TJ, Dussert S, Joe T et al (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tranbarger TJ, Kluabmongkol W, Sangsrakru D, Morcillo F, Tregear JW, Tragoonrung S, Billotte N (2012) SSR markers in transcripts of genes linked to posttranscriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol 12:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  42. USDA (2016) Oilseeds: world market and trade. Foreign Agricultural Service, Circular Series October 2016. Accessed 16 Mar 2017
  43. Van Ooijen J (2004) MapQTL5, software for mapping of quantitative loci in experimental populations. Kyazma BV. Wageningen, the NetherlandsGoogle Scholar
  44. Van Ooijen JW (2006) JoinMap ® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., WageningenGoogle Scholar
  45. Wong YT, Kushairi A, Rajanaidu N et al (2015) Screening of wild oil palm (Elaeis guineensis) germplasm for lipase activity. J Agric Sci 154:1241–1252. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hubert Domonhédo
    • 1
    • 2
  • Teresa Cuéllar
    • 3
    • 4
  • Sandra Espeout
    • 3
    • 4
  • Gaëtan Droc
    • 3
    • 4
  • Marilyne Summo
    • 3
    • 4
  • Ronan Rivallan
    • 3
    • 4
  • David Cros
    • 3
    • 4
  • Bruno Nouy
    • 5
  • Alphonse Omoré
    • 1
  • Léifi Nodichao
    • 1
  • Vincent Arondel
    • 6
  • Corneille Ahanhanzo
    • 6
  • Norbert Billotte
    • 3
    • 4
    Email author
  1. 1.Centre de Recherches Agricoles-Plantes Pérennes (CRA-PP). Institut National des Recherches Agricoles du Bénin (INRAB)BP 1 PobèBénin
  2. 2.Laboratoire Central des Biotechnologies Végétales et d’Amélioration des Plantes; Faculté des Sciences et Techniques (FAST)Université d’Abomey-Calavi (UAC)CotonouBénin
  3. 3.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Bios-UMR AGAPMontpellier Cedex 5France
  4. 4.CIRAD, INRA, Montpellier SupAgroUniversity of MontpellierMontpellierFrance
  5. 5.PalmElit SASMontferrier sur LezFrance
  6. 6.University of BordeauxVillenave d’OrnonFrance

Personalised recommendations