Tree Genetics & Genomes

, 14:70 | Cite as

Quantitative trait loci (QTL) mapping of blush skin and flowering time in a European pear (Pyrus communis) progeny of ‘Flamingo’ × ‘Abate Fetel’

  • Solomon M. Ntladi
  • Jan P. Human
  • Cecilia Bester
  • Jessica Vervalle
  • Rouvay Roodt-WildingEmail author
  • Kenneth R. Tobutt
Original Article
Part of the following topical collections:
  1. Complex Traits


Blush skin and flowering time are agronomic traits of interest to the Agricultural Research Council (ARC) Infruitec-Nietvoorbij pear breeding programme. The genetic control of these traits was investigated in the pear progeny derived from ‘Flamingo’ (blush cultivar) × ‘Abate Fetel’ (slightly blush) made up of 121 seedlings. Blush skin was scored phenotypically over three seasons and flowering time was scored over two seasons. A total of 160 loci from 137 simple sequence repeat (SSR) markers were scored in the progeny and used to construct parental genetic linkage maps. Quantitative trait loci (QTL) analysis revealed two QTLs for blush skin, a major QTL on linkage group (LG) 5 in ‘Flamingo’, and a major QTL on LG9 in ‘Abate Fetel’. Two SSR markers, NB101a and SAmsCO865954, were closely linked with the major QTL on LG5 in ‘Flamingo’, with alleles 139 bp and 462 bp in coupling, respectively. These markers were present in approximately 90% of the seedlings scored as good blush (class 4) based on the average data set. These two markers were used to genotype other pear accessions to validate the QTL on LG5 with the view of marker-assisted selection. Two candidate genes, MYB86 and UDP-glucosyl transferase, were associated with the QTL on LG5 and MYB21 and MYB39 were associated with the QTL on LG9. QTL analysis for flowering time revealed a major QTL located on LG9 in both parents. Marker GD142 with allele 161 bp from ‘Flamingo’ was present in approximately 88% of the seedlings that flowered earlier than either parent, based on the average data set. The QTLs and linked markers will facilitate marker-assisted selection for the improvement of these complex traits.


European pear Blush skin Flowering time Candidate genes SSRs QTLs 



SM Ntladi thanks the National Research Foundation (NRF) for a Professional Development Programme (PDP) PhD studentship. Other costs were funded by the NRF Technology and Human Resource for Industry Programme (THRIP) (grants TP2011062500004 and TP1407249871) and the Agricultural Research Council (ARC). Mardé Booyse is thanked for statistical analysis of the phenotypic data. Justin Lashbrooke and Fabrizio Costa are thanked for analysis of anthocyanin-related genes. Kashief Soeker is acknowledged for screening of the associated markers in 25 pear accessions.

Data archiving statement

PCR multiplexes made up of pear and apple SSR primer pairs used to genotype the ‘Flamingo’ × ‘Abate Fetel’ pear progeny for mapping are provided in Table S1.

Blush skin data sets used to detect QTLs in the ‘Flamingo’ × ‘Abate Fetel’ progeny are provided in Table S2.

Flowering time data sets (Julian date of 80% full bloom) used to detect QTLs in the ‘Flamingo’ × ‘Abate Fetel’ progeny are provided in Table S3.

Information on markers not used for mapping in the progeny of ‘Flamingo’ × ‘Abate Fetel’ is provided in Table S4.

Genotypic data for the SSR markers in the pear progeny of ‘Flamingo’ × ‘Abate Fetel’ are provided in Table S5.

Position of the QTLs for blush skin detected on LG5 in ‘Flamingo’ and LG9 in ‘Abate Fetel’ in the pear progeny of ‘Flamingo’ × ‘Abate Fetel’ based on grouping of classes is provided in Fig. S1.

Supplementary material

11295_2018_1280_MOESM1_ESM.docx (74 kb)
ESM 1 (DOCX 73 kb)


  1. Allard A, Bink MC, Martinez S, Kelner JJ, Legave JM, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67:2875–2888CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970CrossRefGoogle Scholar
  3. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380CrossRefGoogle Scholar
  4. Bouvier L, Bourcy M, Boulay M, Tellier M, Gueif P, Denance C, Durel CE, Lespinasse Y (2012) A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genomes 8:53–60CrossRefGoogle Scholar
  5. Campoy JA, Ruiz D, Egea J, Rees DJG, Celton J-M, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 29:404–410CrossRefGoogle Scholar
  6. Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87CrossRefGoogle Scholar
  7. Celton JM, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstock using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107CrossRefGoogle Scholar
  8. Celton J-M, Martinez S, Jammes M-J, Bechti A, Salvi S, Legave J-M, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392CrossRefGoogle Scholar
  9. Chagné D, Kirk C, How N, Whitworth C, Fontic C, Reig G, Sawyer G, Rouse S, Poles L, Gardiner SE, Kumar S, Espley R, Volz RK, Troggio M, Iglesias I (2016) A functional genetic marker for apple red skin coloration across different environments. Tree Genet Genomes 12:67CrossRefGoogle Scholar
  10. Chen H, Song Y, Li LT, Khan MA, Li XG, Korban SS, Wu J, Zhang SL (2015) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Report 33:316–325CrossRefGoogle Scholar
  11. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440CrossRefPubMedCentralPubMedGoogle Scholar
  12. Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Exp Bot 68:1451–1466CrossRefPubMedCentralPubMedGoogle Scholar
  13. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896CrossRefPubMedCentralPubMedGoogle Scholar
  14. Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon J-M, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292CrossRefPubMedCentralPubMedGoogle Scholar
  15. Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzil C, Sansavini S (2004) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418CrossRefGoogle Scholar
  16. Dondini L, Pierantoni L, Ancarani V, Angelo MD, Cho KH, Shin I, Musacchi S, Kang SJ, Sanvavini S (2008) The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett’. Plant Breed 127:524–526CrossRefGoogle Scholar
  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  18. Dussi MC, Sugar D, Wrolstad RE (1995) Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color. J Am Soc Hortic Sci 120:785–789Google Scholar
  19. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in fruit apple is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427CrossRefPubMedCentralPubMedGoogle Scholar
  20. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, HarlowGoogle Scholar
  21. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930CrossRefGoogle Scholar
  22. Feng S, Wang Y, Yang S, Xu Y, Chen X (2010) Anthocyanin biosynthesis in pear is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232:245–255CrossRefGoogle Scholar
  23. Fernández-Fernández F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6:1039–1041CrossRefGoogle Scholar
  24. Fernández-Fernández F, Evans KM, Clarke JB, Govan CL, James CM, Maric S, Tobutt KR (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Genomes 4:469–479CrossRefGoogle Scholar
  25. Fernández-Fernández F, Antanaviciute L, Van Dyk MM, Tobutt KR, Evans KM, Rees DJG, Dunwell JM, Sargent DJ (2012) A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genet Genomes 8:991–1002CrossRefGoogle Scholar
  26. Francis FJ (1970) Anthocyanins in pear. HortScience 5:42Google Scholar
  27. Frett TJ, Reighhard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:369–381CrossRefGoogle Scholar
  28. Gabay G, Dahan Y, Izhaki Y, Isaacson T, Elkind Y, Ben-Ari G, Flaishman MA (2017) Identification of QTLs associated with spring vegetative budbreak time after dormancy release in pear (Pyrus communis L.). Plant Breed 136:749–758CrossRefGoogle Scholar
  29. Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411CrossRefGoogle Scholar
  30. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254CrossRefGoogle Scholar
  31. Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hauagge R, Cummins JN (1991) Genetics of length of dormancy period in Malus vegetative buds. J Am Soc Hortic Sci 116:121–126Google Scholar
  33. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus x domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128:515–520Google Scholar
  34. Hjeltnes SH, Vercammen J, Gomand A, Måge F, Røen D (2015) High potential in new Norwegian bred pear cultivars. Proc XII International Pear Symposium. Acta Horti 1094: 111–116Google Scholar
  35. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica Borkh. core subset collection. Theor Appl Genet 97:671–683CrossRefGoogle Scholar
  36. Hühn M, Piepho HP (2003) Determining the sample size for co-dominant molecular marker-assisted linkage detection for a monogenic qualitative trait by controlling the type-I and type-II errors in a segregating F2 population. Theor Appl Genet 106:840–845CrossRefGoogle Scholar
  37. Human JP (2013) Breeding blush pear (Pyrus communis L.) in South Africa. Acta Hort 976:383–388CrossRefGoogle Scholar
  38. Human T, von Mollendorff L (2009) Cultivar Info: Cheeky™. Cultivar Information Sheet. ARC Infruitec-Nietvoorbij, Stellenbosch, South AfricaGoogle Scholar
  39. Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, Van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9CrossRefPubMedCentralPubMedGoogle Scholar
  40. Inoue E, Matsuki Y, Anzai H, Evans K (2007) Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Resour 7:445–447CrossRefGoogle Scholar
  41. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573CrossRefGoogle Scholar
  42. Knäbel M, Friend AP, Palmer JW, Diack R, Wiedow C, Alspach P, Deng C, Gardiner SE, Tustin DS, Schaffer R, Foster T, Chagné D (2015) Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol 15:230CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175CrossRefGoogle Scholar
  44. Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251CrossRefPubMedCentralPubMedGoogle Scholar
  45. Li L, Ban ZJ, Li XH, Wu MY, Wang AL, Jiang YQ, Jiang YH (2012) Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.). PLoS One 7:e46070CrossRefPubMedCentralPubMedGoogle Scholar
  46. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  47. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526CrossRefGoogle Scholar
  48. Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  49. Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won KH, Durel C, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8:e77022CrossRefPubMedCentralPubMedGoogle Scholar
  50. Montanari S, Perchepied L, Renault D, Frijters L, Velasco R, Horner M, Gardiner SE, Chagné D, Bus VGM, Durel C-E, Malnoy M (2016) A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breed 36:47CrossRefGoogle Scholar
  51. Moriya S, Iwanami H, Kotoda N, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2012) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs. Tree Genet Genomes 8:709–723CrossRefGoogle Scholar
  52. Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400CrossRefGoogle Scholar
  53. Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Choidini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317CrossRefGoogle Scholar
  54. Pierantoni L, Dondini L, De Franceschi P, Musacchi S, Winkel BSJ, Sansavini S (2010) Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis. Plant Physiol Biochem 48:1020–1026CrossRefGoogle Scholar
  55. Quero-García J, Fodor A, Reignier A, Capdeville G, Joly J, Tauzin Y, Fouilhaux L, Dirlewanger E (2014) QTL detection of important agronomic traits for sweet cherry breeding. Acta Hortic 1020:57–64CrossRefGoogle Scholar
  56. Ramkumar G, Srinivasarao K, Madhan Mohan K, Sudarshan I, Sivaranjani AKP, Gopalakrishna K, Neeraja CN, Balachandran SM, Sundaram RM, Prasad MS, Shobha Rani N, Rama Prasad AM, Viraktamath BC, Madhav MS (2011) Development and validation of functional marker targeting an indel in the major rice blast disease resistance gene Pi54 (Pik h). Mol Breed 27:129–135CrossRefGoogle Scholar
  57. Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52CrossRefPubMedCentralPubMedGoogle Scholar
  58. LeRoux PMF, Christen D, Duffy B, Tartarini S, Dondini L, Yamamoto T, Nishitani C, Terakami S, Lespinasse Y, Kellerhals M, Patocchi A (2012) Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar ‘Harrow Sweet’ (Pyrus communis L.). Plant Breed 131:656–664CrossRefGoogle Scholar
  59. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318CrossRefGoogle Scholar
  60. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224CrossRefGoogle Scholar
  61. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013CrossRefPubMedCentralPubMedGoogle Scholar
  62. Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagne D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832CrossRefGoogle Scholar
  63. Steyn WJ, Holcroft DM, Wand SJE, Jacobs G (2004a) Anthocyanin degradation in detached pome fruit with reference to preharvest red color loss and pigmentation patterns of blushed and fully red pear. J Am Soc Hortic Sci 129:13–19Google Scholar
  64. Steyn WJ, Holcroft DM, Wand SJE, Jacobs G (2004b) Regulation of pear color development in relation to activity of flavonoid enzymes. J Am Soc Hortic Sci 129:6–12Google Scholar
  65. Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2005) Red colour development and loss in pears. Acta Hortic 671:79–85CrossRefGoogle Scholar
  66. Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232CrossRefPubMedCentralPubMedGoogle Scholar
  67. Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N, Saito T, Yamamoto T (2014) Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes 10:853–863CrossRefGoogle Scholar
  68. Turpin SR, Stefanelli D, Jones L, Norton J, Probst R, Konings J, Langford G (2016) Perfect pears for the next generation of consumers. Acta Hortic 1120:507–514CrossRefGoogle Scholar
  69. Van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus x domestica Borkh.). Tree Genet Genomes 6:489–502CrossRefGoogle Scholar
  70. Van Ooijen JW (2006) JoinMap ® 4 Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  71. Van Ooijen JW (2009) MapQTL ® 6 Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, WageningenGoogle Scholar
  72. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839CrossRefGoogle Scholar
  73. Volz RK, White AG, Brewer LR (2008) Breeding for red skin colour in interspecific pears. Acta Hortic 800:469–474CrossRefGoogle Scholar
  74. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefGoogle Scholar
  75. Wand SJE, Steyn WJ, Holcroft DM, Mdluli MJ, Van den Dool K, Jacobs G (2005) Use of evaporative cooling to improve ‘Rosemarie’ and ‘Forelle’ pears fruit blush colour and quality. Acta Hortic 671:103–111CrossRefGoogle Scholar
  76. Wang C, Tian Y, Buck EJ, Gardiner SE, Dai H, Jai Y (2011) Genetic mapping of PcDw determining pear dwarf trait. J Am Soc Hortic 136:48–53Google Scholar
  77. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban S, Wang H, Chen N, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408CrossRefPubMedCentralPubMedGoogle Scholar
  78. Xie R, Zheng L, He S, Zheng Y, Yi S, Deng L (2011) Anthocyanin biosynthesis in fruit tree crops: genes and their regulation. Afr J Biotechnol 10:19890–19897Google Scholar
  79. Xue H, Shi T, Wang F, Zhou H, Yang J, Wang L, Wang S, Su Y, Zhang Z, Qiao Y, Li X (2017) Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hortic Res 4:17053CrossRefPubMedCentralPubMedGoogle Scholar
  80. Yamamoto T, Terakami S (2016) Genomics of pear and other Rosaceae fruit trees. Breed Sci 66:148–159CrossRefPubMedCentralPubMedGoogle Scholar
  81. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278CrossRefGoogle Scholar
  82. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002a) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16CrossRefGoogle Scholar
  83. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002b) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137CrossRefGoogle Scholar
  84. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18CrossRefGoogle Scholar
  85. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, Van de Weg WE, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hortic 663:51–56CrossRefGoogle Scholar
  86. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329CrossRefGoogle Scholar
  87. Yamamoto T, Terakami S, Moriya S, Hosaka F, Kurita K, Kanamori H, Katayose Y, Saito T, Nishitani C (2013) DNA markers developed from genome sequencing analysis in Japanese pear (Pyrus pyrifolia). Acta Hortic 976:477–484CrossRefGoogle Scholar
  88. Yang Y, Yao G, Zheng D, Zhang S, Wang C, Zhang M, Wu J (2015a) Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep 34:189–198CrossRefGoogle Scholar
  89. Yang Y, Yao G, Yue W, Zhang S, Wu J (2015b) Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Front Plant Sci 6:795PubMedPubMedCentralGoogle Scholar
  90. Yao G, Ming M, Allan AC, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J (2017) Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J 92:437–451CrossRefGoogle Scholar
  91. Zhang Y, Li W, Dou Y, Zhang J, Jiang G, Miao L, Han G, Liu Y, Li H, Zhang Z (2015) Transcript quantification by RNA-seq reveals differentially expressed genes in the red and yellow fruits of Fragaria vesca. PLoS One 10:e0144356CrossRefPubMedCentralPubMedGoogle Scholar
  92. Zielinski QB (1963) Precocious flowering of pear seedlings carrying the cardinal red colour gene. J Hered 54:75–76CrossRefGoogle Scholar
  93. Zielinski QB, Reimer FC, Quakenbush VL (1965) Breeding behaviour of fruit characteristics in pears, Pyrus communis L. J Am Soc Hortic Sci 86:81–87Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Solomon M. Ntladi
    • 1
    • 2
  • Jan P. Human
    • 1
  • Cecilia Bester
    • 1
  • Jessica Vervalle
    • 2
  • Rouvay Roodt-Wilding
    • 2
    Email author
  • Kenneth R. Tobutt
    • 1
  1. 1.Agricultural Research Council (ARC) Infruitec-NietvoorbijStellenboschSouth Africa
  2. 2.Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations