Tree Genetics & Genomes

, 14:67 | Cite as

Phylogeographic structure of Spondias tuberosa Arruda Câmara (Anacardiaceae): seasonally dry tropical forest as a large and continuous refuge

  • Eliane Balbino
  • Beatriz Caetano
  • Cicero AlmeidaEmail author
Original Article
Part of the following topical collections:
  1. Population structure


Spondias tuberosa occurs in the Caatinga domain (seasonally dry tropical forest biome) of north-eastern Brazil, a large biome with ecogeographic regions that may have modelled the population structure of the species. Here we studied the phylogeographic pattern of S. tuberosa using sequences of the accD-psaI plastid region and six SSR markers in individuals distributed across 20 localities. The results for accD-psaI demonstrated nine haplotypes: some of which were exclusive to Caatinga ecoregions, whereas others were found in all localities. Spatial analysis of molecular variance revealed two groups (Fct = 0.34, P < 0.0039) with 33.91% variation between them. The SSR analyses displayed 2–5 alleles at each locus, some of which were unique to certain localities. As in the accD-psaI region, the population structure obtained using SSR markers fell into two groups: (1) a large group containing the majority of the geographic region of Caatinga and (2) a small group near the Atlantic forest. We demonstrate the population structure of S. tuberosa, identifying the Caatinga as large, continuous refuge and the region near the interface between the Caatinga and the Atlantic forest as second refuge.


Caatinga Population genetics Biogeography Evolution Spondias Umbu 



The authors acknowledge the Federal University of Alagoas for the laboratory and scientific support.

Author’s contributions

E.B. and B.C. collected tissue and molecular data. C.A. analysed the data and led the writing. All authors conceived the ideas and approved the final version of the manuscript.

Funding information

The authors thank the Fundação de Apoio à Pesquisa de Alagoas (FAPEAL) for funding this Project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2018_1279_Fig6_ESM.png (176 kb)
Fig. S1

(A) position sites for SNPs and indels for the accD-psaI intergenic spacer. (B) Phylogenetic analysis using Bayesian analysis, with support inferred by posterior probability (here, represented in percentage). (PNG 175 kb)

11295_2018_1279_MOESM1_ESM.tif (15.6 mb)
High Resolution (TIF 15955 kb)
11295_2018_1279_Fig7_ESM.png (2.5 mb)
Fig. S2

(A) Minimum-spanning network depicting the distribution of Spondias tuberosa multilocus microsatellites. (B) Principal component analysis (PCA) revealing a two-dimensional distribution of Spondias tuberosa genotypes. (PNG 2549 kb)

11295_2018_1279_MOESM2_ESM.tif (6.2 mb)
High Resolution (TIF 6395 kb)
11295_2018_1279_Fig8_ESM.png (52 kb)
Fig. S3

The observed (red) and expected (blue) pairwise mismatch distribution of accD-psaI haplotypes evidencing past population expansion. (PNG 51 kb)

11295_2018_1279_MOESM3_ESM.tif (14.1 mb)
High Resolution (TIF 14413 kb)
11295_2018_1279_MOESM4_ESM.docx (15 kb)
Table S1 (DOCX 14 kb)
11295_2018_1279_MOESM5_ESM.docx (14 kb)
Table S2 (DOCX 14 kb)


  1. Bruvo R, Michiels NK, D’souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106CrossRefPubMedGoogle Scholar
  2. Costa GC, Hampe A, Ledru MP, Martinez PA, Mazzochini GG, Shepard BD, Werneck FP, Moritz C, Carnaval AC (2017) Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Glob Ecol Biogeogr 27:285–297CrossRefGoogle Scholar
  3. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:419CrossRefGoogle Scholar
  4. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  6. Espíndola ACM, Almeida CCS, Carvalho NSG, Roza MLA (2004) Diâmetro do caule e método de enxertia na formação de mudas de umbuzeiro (Spondias tuberosa Arr. Cam.). Rev Bras Agrociência 10:371–372Google Scholar
  7. Estoup A, Guillot G, Santos F (2007) Geneland: simulation and MCMC inference in landscape genetics. R package version 2.0.5. URL:
  8. Ferreira ME, Grattapaglia D (1998) Introdução ao uso de marcadores moleculares em análise genética. Embrapa, BrasíliaGoogle Scholar
  9. Gonçalves-Oliveira RC, Wöhrmann T, Benko-Iseppon AM, Krapp F, Alves M, Wanderley MGL, Weising K (2017) Population genetic structure of the rock outcrop species Encholirium spectabile (Bromeliaceae): the role of pollination vs. seed dispersal and evolutionary implications. Am J Bot 104:868–878CrossRefPubMedGoogle Scholar
  10. Gruber B, Adamack A (2017) PopGenReport v3.0.0 A simple framework to analyse population and landscape genetic data
  11. Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  14. Leite YL, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC, Quaresma VS, Fagundes V, Paresque R, Passamani M, Pardini R (2016) Neotropical forest expansion during the last glacial period challenges refuge hypothesis. PNAS 113:1008–1013CrossRefPubMedGoogle Scholar
  15. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  16. Lorenzi H (2008) Árvores Brasileiras: Manual de identificação e cultivo de plantas arbóreas do Brasil. Nova Odessa, São PauloGoogle Scholar
  17. Machado MC, Carvalho PCL, Berg CVD (2015) Domestication, hybridization, speciation, and the origins of an economically import ant tree crop of Spondias (anacardiaceae) from the Brazilian caatinga dry forest. Neodiversity 8:8–49CrossRefGoogle Scholar
  18. Manolopoulou I, Legarreta L, Emerson BC, Brooks S, Tavare S (2011) A Bayesian approach to phylogeographic clustering. Interface Focus 1(6):909–921CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mitchell JD, Daly DC (2015) A revision of Spondias L. (Anacardiaceae) in the Neotropics. PhytoKeys 55:1–92CrossRefGoogle Scholar
  20. Moro MF, Silva IA, Araújo FS, Lughadha EN, Meagher TC, Martins FR (2015) The role of edaphic environment and climate in structuring phylogenetic pattern in seasonally dry tropical plant communities. Journal Plos one 13:083–970Google Scholar
  21. Paradis E, Jombart T, Schliep K, Potts A, Winter D (2017) Pegas v0.10 population and evolutionary genetics analysis systemGoogle Scholar
  22. Rambaut A, Drummond AJ (2009) Tracer version 1.5 [computer program]
  23. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–269PubMedGoogle Scholar
  24. Santos CAF (1997) Dispersão da variabilidade fenotípica do umbuzeiro no semi-árido brasileiro. Pesq Agrop Brasileira 32:923–930Google Scholar
  25. Santos CAF, Oliveira VR (2008) Inter-relações genéticas entre espécies do gênero Spondias com base em marcadores AFLP. Rev Bras Frutic 30:731–735CrossRefGoogle Scholar
  26. Scarcelli N, Barnaud A, Eiserhardt W, Treier UA, Seveno M, d'Anfray A, Vigouroux Y, Pintaud J-C (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLoS One 6:e19954CrossRefPubMedPubMedCentralGoogle Scholar
  27. Team RC (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  28. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation. Genetics 132:619–633PubMedPubMedCentralGoogle Scholar
  29. Vieira FDA, Lage Novaes RM, Fajardo CG, Dos Santos RM, Almeida HDS, De Carvalho D, Lovato MB (2015) Holocene southward expansion in seasonally dry tropical forests in South America: phylogeography of Ficus bonijesulapensis (Moraceae). Bot J Linn Soc 177:189–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Genetics Resources, Campus ArapiracaUniversidade Federal de AlagoasArapiracaBrazil

Personalised recommendations