Advertisement

Tree Genetics & Genomes

, 14:57 | Cite as

De novo transcriptome assembly based on RNA-seq and dynamic expression of key enzyme genes in loganin biosynthetic pathway of Cornus officinalis

  • Chengke Bai
  • Yongmei Wu
  • Bo Cao
  • Jun Xu
  • Guishuang Li
Original Article
  • 111 Downloads
Part of the following topical collections:
  1. Gene Expression

Abstract

Cornus officinalis Sieb. et Zucc. is a small tree that is recognized with notable medicinal, economic, and ecological values. It has been used as traditional Chinese medicine (TCM) for thousands of years in China. Modern pharmacological research has revealed that cornel iridoid glycosides (CIGs, e.g., loganin and morroniside) in dried pericarp of C. officinalis have significant medicinal activities for strengthening immune functions. However, little is known on the molecular processes responsible for the production of these compounds. This is partly due to the absence of genomic resources, such as sequences of key enzyme genes in the biosynthetic pathways. In the present study, the transcriptome of C. officinalis was analyzed by the RNA sequencing. A total of 54,827 unigenes were yielded by de novo assembly, of which 31,780 unigenes were successfully annotated. As potential molecular markers, 121, 118, 96, 89, and 82 transcription factors belonged to bHLH, MYB, PHD, WRKY, and AP2-ERF were obtained, respectively. Moreover, the results showing that geraniol 10-hydroxylase (G10H) and secologanin synthase (SLS) were differentially expressed in fruits and leaves during different growing stages were confirmed by qRT-PCR. Furthermore, we identified two distinct expression patterns of G10H and SLS in loganin synthesis of C. officinalis fruits. Collectively, the genomic information and gene expression results presented in this study will be helpful for future studies on gene discovery and molecular process of loganin synthesis in C. officinalis.

Keywords

Cornus officinalis Loganin Transcriptome RNA-seq 

Notes

Acknowledgments

We thank Drs. Yinghua Zha and Lei Zhang for their helpful revision on this manuscript. We thank Drs. Robin Buell and Dongyan Zhao for their kind assistance on genome sequences. We also thank Professor Vincent Courdavault for the technical support on the figures. This work was supported by the Innovation Team Project of Breeding and Standardized Production of New Varieties of Traditional Chinese Medicine in Fundamental Research Funds of the Central Universities [GK201801008 to CKB], the National Natural Science Foundation of China [31100241 to CKB], and the Fundamental Research Funds for the Central Universities [GK201503046 to GSL].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Data archiving statement

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and are accessible through GEO Series accession number GSE108216 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108216).

Supplementary material

11295_2018_1270_MOESM1_ESM.docx (158 kb)
Fig. S1 (DOCX 158 kb)
11295_2018_1270_MOESM2_ESM.docx (4.9 mb)
Fig. S2 (DOCX 5017 kb)
11295_2018_1270_MOESM3_ESM.docx (787 kb)
Fig. S3 (DOCX 787 kb)
11295_2018_1270_MOESM4_ESM.docx (1.4 mb)
Fig. S4 (DOCX 1428 kb)
11295_2018_1270_MOESM5_ESM.docx (115 kb)
Fig. S5 (DOCX 114 kb)
11295_2018_1270_MOESM6_ESM.docx (36 kb)
Fig. S6 (DOCX 35 kb)
11295_2018_1270_MOESM7_ESM.docx (45 kb)
Fig. S7 (DOCX 45.1 kb)
11295_2018_1270_MOESM8_ESM.docx (37 kb)
Fig. S8 (DOCX 37.3 kb)
11295_2018_1270_MOESM9_ESM.xls (28 kb)
Table S1 (XLS 28 kb)
11295_2018_1270_MOESM10_ESM.xls (62 kb)
Table S2 (XLS 61 kb)
11295_2018_1270_MOESM11_ESM.xls (3 mb)
Table S3 (XLS 3092 kb)
11295_2018_1270_MOESM12_ESM.docx (18 kb)
Table S4 (DOCX 18.1 kb)
11295_2018_1270_MOESM13_ESM.xls (35 kb)
Table S5 (XLS 34 kb)
11295_2018_1270_MOESM14_ESM.xls (18.8 mb)
Table S6 (XLS 19293 kb)
11295_2018_1270_MOESM15_ESM.docx (17 kb)
Table S7 (DOCX 17.1 kb)
11295_2018_1270_MOESM16_ESM.xls (4.2 mb)
Table S8 (XLS 4312 kb)
11295_2018_1270_MOESM17_ESM.xls (666 kb)
Table S9 (XLS 665 kb)
11295_2018_1270_MOESM18_ESM.xls (1.9 mb)
Table S10 (XLS 1929 kb)
11295_2018_1270_MOESM19_ESM.xls (1.6 mb)
Table S11 (XLS 1670 kb)
11295_2018_1270_MOESM20_ESM.xls (0 kb)
Table S12 (XLS 350 bytes)

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai CK, Yu JR, Yu F, Zheng P (2009) Genetic diversity and construction of primary core germplasm in Cornus offcinalis by ISSR marker. Acta Botan Boreali-Occiden Sin 29:2401–2407Google Scholar
  3. Bai CK, Cao B, Li GS, Mao M (2014) Ecological effects on phenotypic, cytological and biochemical diversity of Cornus officinalis germplasm resources in China and USA. Biochem Syst Ecol 55:241–248CrossRefGoogle Scholar
  4. Baik MC, Hoang HD, Hanmer K (1986) A checklist of the Korean cultivated plants. Kulturpflanze 34:69–144CrossRefGoogle Scholar
  5. Cao B, Bai CK, Zhang LL, Li GS, Mao MC (2016) Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. J Plant Ecol 9: 1–12Google Scholar
  6. Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897CrossRefPubMedGoogle Scholar
  7. Chang SJ, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116CrossRefGoogle Scholar
  8. Chen JW, Hou K, Qin P, Liu H, Yi B, Yang W, Wu W (2014) RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genomics 15:571CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186CrossRefGoogle Scholar
  10. Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase 1, a cytochrome P450 enzyme involved in terpenoidindole alkaloid biosynthesis. FEBS Lett 508:215–220CrossRefPubMedGoogle Scholar
  11. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2 GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  12. Ding CK, Chachin K, Ueda Y, Imahori Y, Wang CY (2001) Metabolism of phenolic compounds during loquat fruit development. J Agric Food Chem 49:2883–2888CrossRefPubMedGoogle Scholar
  13. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  14. Dugé de Bernonville T, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houillé B, Papon N, Besseau S, Glévarec G, Atehortùa L, Giglioli-Guivarc’h N, St-Pierre B, de Luca V, O’Connor SE, Courdavault V (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 16:619CrossRefPubMedPubMedCentralGoogle Scholar
  15. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gapper NE, McQuinn RP, Giovannoni JJ (2013) Molecular and genetic regulation of fruit ripening. Plant Mol Biol 82:575–591CrossRefPubMedGoogle Scholar
  17. Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142CrossRefPubMedGoogle Scholar
  18. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16(suppl 1):S170–S180CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  20. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefPubMedGoogle Scholar
  21. Han S, Wu Z, Jin Y, Yang W, Shi H (2015) RNA-seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba L.). Tree Genet Genomes 11:37CrossRefGoogle Scholar
  22. Hanelt P, Institute of Plant Genetics and Crop Plant Research (IPK) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 3. Springer-Verlag, BerlinCrossRefGoogle Scholar
  23. Hsu E (2008) The history of Chinese medicine in the People’s Republic of China and its globalization. East Asian Science, Technology and Society An International Journal 2:465–484Google Scholar
  24. Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577CrossRefPubMedGoogle Scholar
  25. Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12:389CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361CrossRefPubMedGoogle Scholar
  27. Kwon SH, Kim JA, Hong SI, Jung YH, Kim HC, Lee SY, Jang CG (2011) Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem Int 58:533–541CrossRefPubMedGoogle Scholar
  28. Lee KY, Sung SH, Kim SH (2009) Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice. Arch Pharm Res 32:677–683CrossRefPubMedGoogle Scholar
  29. Li GS, Zhang LJ, Bai CK (2012) Chinese Cornus offcinalis: genetic resources, genetic diversity and core collection. Genet Resour Crop Evol 59:1659–1671CrossRefGoogle Scholar
  30. Ma W, Wang KJ, Cheng CS, Yan GQ, Lu WL, Ge JF, Cheng YX, Li N (2014) Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J Ethnopharmacol 153:840–845CrossRefPubMedGoogle Scholar
  31. Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606CrossRefPubMedPubMedCentralGoogle Scholar
  32. National Pharmacopoeia Committee (2005) Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, BeijingGoogle Scholar
  33. Olson SA (2002) EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. Brief Bioinform 3:87–91CrossRefPubMedGoogle Scholar
  34. Oudin A, Courtois M, Rideau M, Clastre M (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6:259–276CrossRefGoogle Scholar
  35. Peebles CA, Sander GW, Hughes EH et al (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoidindole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240CrossRefPubMedGoogle Scholar
  36. Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623CrossRefPubMedGoogle Scholar
  37. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445CrossRefPubMedGoogle Scholar
  38. Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10–24CrossRefPubMedGoogle Scholar
  39. Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967CrossRefPubMedGoogle Scholar
  40. Saradhuldhat P, Paull RE (2007) Pineapple organic acid metabolism and accumulation during fruit development. Sci Hortic 112:297–303CrossRefGoogle Scholar
  41. Schäffer AA, Wolf IY, Ponting PC et al (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15:1000–1011CrossRefPubMedGoogle Scholar
  42. Sun FL, Wang W, Zuo W, Xue JL, Xu JD, Ai HX, Zhang L, Wang XM, Ji XM (2014) Promoting neurogenesis via Wnt/β-catenin signaling pathway accounts for the neurorestorative effects of morroniside against cerebral ischemia injury. Eur J Pharmacol 738:214–221CrossRefPubMedGoogle Scholar
  43. Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoidindole alkaloid biosynthesis. Biochim Biophys Acta 1769:139–148CrossRefPubMedGoogle Scholar
  44. Tohge T, Alseekh S, Fernie AR (2014) On the regulation and function of secondary metabolism during fruit development and ripening. J Exp Bot 65:4599–4611CrossRefPubMedGoogle Scholar
  45. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang J, Liu Y, Cai Y (2010) Cloning and functional analysis of geraniol 10-hydroxylase, a cytochrome P450 from Swertia mussotii Franch. Biosci Biotechnol Biochem 74:1583–1590CrossRefPubMedGoogle Scholar
  47. Xie C, Mao X, Huang J (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(Web Server issue):W316–W322CrossRefPubMedPubMedCentralGoogle Scholar
  48. Xu HQ, Hao HP (2004) Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular over expression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol Pharm Bull 27:1014–1018CrossRefPubMedGoogle Scholar
  49. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhao LH, Ding YX, Zhang L, Li L (2010) Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria–fornix transected rats. Eur J Pharmacol 647:68–74CrossRefPubMedGoogle Scholar
  51. Zhao DY, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR (2017) De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience 6:1–7PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi’anChina
  2. 2.Core Research Laboratory, the Second Affiliated Hospital, School of MedicineXi’an Jiaotong UniversityXi’anChina

Personalised recommendations