Tree Genetics & Genomes

, 14:22 | Cite as

Identification of bloom date QTLs and haplotype analysis in tetraploid sour cherry (Prunus cerasus)

  • Lichun Cai
  • Travis Stegmeir
  • Audrey Sebolt
  • Chaozhi Zheng
  • Marco C. A. M. Bink
  • Amy Iezzoni
Original Article
Part of the following topical collections:
  1. Complex Traits

Abstract

Bloom date is an important production trait in sour cherry (Prunus cerasus L.) as the risk of crop loss to floral freeze injury increases with early bloom time. Knowledge of the major loci controlling bloom date would enable breeders to design crosses and select seedlings with late bloom date. As sour cherry is a segmental allotetraploid, quantitative trait locus (QTL) analysis for bloom date was performed based on haplotype reconstruction by identifying the parental origins of marker alleles in sour cherry. A total of 338 sour cherry individuals from five F1 populations were genotyped using the cherry 6K Illumina Infinium® SNP array and phenotyped for bloom date in 3 years. A total of four QTLs were identified on linkage group (G)1, G2, G4, and G5, respectively. For these QTLs, 14 haplotypes constructed for the QTL regions were significantly associated with bloom date, accounting for 10.1–27.9% of the bloom date variation within individual populations. The three most significant haplotypes, which were identified for the G4 (G4-k), G2 (G2-j), and G1 (G1-c) QTLs, were associated with 2.8, 1.8, and 1.0 days bloom delay, respectively. These three haplotypes were also demonstrated to have additive effects on delaying bloom date for both individual and multiple QTLs. These results demonstrate that bloom date is under polygenic control in sour cherry; yet, pyramiding late blooming haplotypes for single and multiple QTLs would be an effective strategy to obtain later blooming offspring.

Keywords

Bloom date QTL Haplotype Sour cherry Marker-assisted breeding 

Notes

Acknowledgements

This project was supported in part by the USDA-NIFA-Specialty Crop Research Initiative project, RosBREED: Enabling marker-assisted breeding in Rosaceae (2009-51181-05808), and RosBREED 2: Combining disease resistance with horticultural quality in new rosaceous cultivars (2014-51181-22378).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data Archiving Statement

The linkage map constructed and the QTL regions identified will be made available at the Genome Database for Rosaceae (www.rosaceae.org/publication_datasets) under accession number tfGDR 1033.

Supplementary material

11295_2018_1236_MOESM1_ESM.docx (16 kb)
Supplementary Table S1 (DOCX 15 kb)
11295_2018_1236_MOESM2_ESM.docx (17 kb)
Supplementary Table S2 (DOCX 17 kb)
11295_2018_1236_MOESM3_ESM.docx (47 kb)
Supplementary Table S3 (DOCX 46 kb)
11295_2018_1236_MOESM4_ESM.docx (165 kb)
Supplementary Fig. S1 (DOCX 165 kb)
11295_2018_1236_MOESM5_ESM.docx (62 kb)
Supplementary Fig. S2 (DOCX 61 kb)
11295_2018_1236_MOESM6_ESM.xlsx (20 kb)
Supplementary Fig. S3 (XLSX 20 kb)
11295_2018_1236_MOESM7_ESM.xlsx (22 kb)
Supplementary Fig. S4 (XLSX 22 kb)
11295_2018_1236_MOESM8_ESM.xlsx (18 kb)
Supplementary Fig. S5 (XLSX 17 kb)
11295_2018_1236_MOESM9_ESM.xlsx (24 kb)
Supplementary Fig. S6 (XLSX 23 kb)

References

  1. Andersen RL, Brown SK, Way RD, Livermore KG, Terry DE (1999) Sour cherry cultivar named ‘Surefire’. U.S. plant patent 11108PGoogle Scholar
  2. Anderson JL, Seeley SD (1993) Bloom delay in deciduous fruits. Hortic Rev 15:97–144Google Scholar
  3. Ballester J, Socias I, Company R, Arús P, deVicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120(3):268–270.  https://doi.org/10.1046/j.1439-0523.2001.00604.x CrossRefGoogle Scholar
  4. Beaver JA, Iezzoni AF (1993) Allozyme inheritance in tetraploid sour cherry (Prunus cerasus L.) J Am Soc Hortic Sci 118:873–877Google Scholar
  5. Birchler JA, Newton KJ (1981) Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99(2):247–266PubMedPubMedCentralGoogle Scholar
  6. Bourke PM (2014) QTL analysis in polyploids: model testing and power calculations for an autotetraploid. In: Minor thesis (MSc) plant breeding, University and Research Centre, WageningenGoogle Scholar
  7. Cai L, Voorrips RE, van de Weg E, Peace P, Iezzoni A (2017) Genetic structure of a QTL hotspot on chromosome 2 in sweet cherry indicates positive selection for favorable haplotypes. Mol Breed 37(7):85.  https://doi.org/10.1007/s11032-017-0689-6 CrossRefGoogle Scholar
  8. Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martinez-Gomez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 29(2):404–410.  https://doi.org/10.1007/s11105-010-0242-9 CrossRefGoogle Scholar
  9. Castède S, Campoy JA, García JQ, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering data dissected into chilling and heat requirements. New Phytol 202(2):703–715.  https://doi.org/10.1111/nph.12658 CrossRefPubMedGoogle Scholar
  10. Castède S, Campoy JA, Le Dantec L, Quero-García J, Barreneche T, Wenden B, Dirlewanger E (2015) Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). PLoS One 10(11):e0143250.  https://doi.org/10.1371/journal.pone.0143250 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971PubMedPubMedCentralGoogle Scholar
  12. De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, Dondini L, Dirlewanger E, Quero-Garcia J, Campoy JA, Iezzoni AF (2013) Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breed 32(2):311–326.  https://doi.org/10.1007/s11032-013-9872-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98(1):18–31.  https://doi.org/10.1007/s001220051035 CrossRefGoogle Scholar
  14. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howard W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101(26):9891–9896.  https://doi.org/10.1073/pnas.0307937101 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dirlewanger E, Claverie J, Iezzoni AF, Wunsch A (2009) Sweet and sour cherry: linkage maps, QTL detection and marker assisted selection. In: Folta KM, Gardiner SE (eds) Genetics and Genomics of Rosaceae. Springer, New York, pp 291–313.  https://doi.org/10.1007/978-0-387-77491-6_14 CrossRefGoogle Scholar
  16. Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon J-M, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in tree Prunus species: peach, apricot and sweet cherry. Heredity 109(5):280–292.  https://doi.org/10.1038/hdy.2012.38 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185(4):917–930.  https://doi.org/10.1111/j.1469-8137.2009.03119.x CrossRefPubMedGoogle Scholar
  18. Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142(4):1349–1355PubMedPubMedCentralGoogle Scholar
  19. Hackett CA, Milne I, Bradshaw JE, Luo Z (2007) TetraploidMap for windows: linkage map construction and QTL mapping in autotetraploid species. J Hered 98(7):727–729.  https://doi.org/10.1093/jhered/esm086 CrossRefPubMedGoogle Scholar
  20. Iezzoni AF (1996) Sour cherry cultivars: objectives and methods of fruit breeding and characteristics of principal commercial cultivars. In: Webster AD, Looney NE (eds) Cherries: Crop physiology, production and uses. University Press, Cambridge, pp 223–241Google Scholar
  21. Illumina Inc. (2010) GenomeStudio genotyping module v1.0, User Guide. Illumina Inc., San DiegoGoogle Scholar
  22. Iovene M, Zhang T, Lou Q, Buell CR, Jiang J (2013) Copy number variation in potato—an asexually propagated autotetraploid species. Plant J 75(1):80–89.  https://doi.org/10.1111/tpj.12200 CrossRefPubMedGoogle Scholar
  23. Klagges C, Campoy JA, Quero-Garcia J, Guzman A, Mansur L, Gratacos E, Silva H, Rosyara UR, Iezzoni A, Meisel LA, Dirlewanger E (2013) Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS One 8(1):e54743.  https://doi.org/10.1371/journal.pone.0054743 CrossRefPubMedPubMedCentralGoogle Scholar
  24. NASS (2012) National Agricultural Statistics Service. http://www.nass.usda.org
  25. Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, Stegmeir T, Sebolt A, Gilmore B, Lawley C, Mockler TC, Bryant DW, Wilhelm L, Iezzoni A (2012) Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One 7(12):e48305.  https://doi.org/10.1371/journal.pone.0048305 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13(1):166.  https://doi.org/10.1186/1471-2229-13-166 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109(4):884–897.  https://doi.org/10.1007/s00122-004-1703-z CrossRefPubMedGoogle Scholar
  28. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/ Google Scholar
  29. Rak K, Bethke PC, Palta JP (2017) QTL mapping of potato chip color and tuber traits within an autotetraploid family. Mol Breed 37(2):15.  https://doi.org/10.1007/s11032-017-0619-7 CrossRefGoogle Scholar
  30. Sánchez-Pérez W, Howad F, Dicenta P, Arús, P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126(3):310–318.  https://doi.org/10.1111/j.1439-0523.2007.01329.x
  31. Sánchez-Pérez R, Del Cueto J, Dicenta F, Martínez-Gómez P (2014) Recent advancements to study flowering time in almond and other Prunus species. Front Plant Sci 5:334PubMedPubMedCentralGoogle Scholar
  32. Schuster M, Wolfram B (2005) Sour cherry breeding at Dresden-Pillnitz. Acta Hortic (667):127–130.  https://doi.org/10.17660/ActaHortic.2005.667.17
  33. Stegmeir T, Sebolt A, Iezzoni A (2014a) Phenotyping protocol for sour cherry (Prunus cerasus L.) to enable a better understanding of trait inheritance. J Am Pomol Soc 68:40–47Google Scholar
  34. Stegmeir T, Schuster M, Sebolt A, Rosyara U, Sundin GW, Iezzoni A (2014b) Cherry leaf spot resistance in cherry (Prunus) is associated with a quantitative trait locus on linkage group 4 inherited from P. canescens. Mol Breed 34(3):927–935.  https://doi.org/10.1007/s11032-014-0086-3 CrossRefGoogle Scholar
  35. Stegmeir T, Cai L, Basundari FRA, Sebolt AM, Iezzoni AF (2015) A DNA test for fruit color in tetraploid sour cherry (Prunus cerasus L.) Mol Breed 35(7):149.  https://doi.org/10.1007/s11032-015-0337-y CrossRefGoogle Scholar
  36. Teo YY, Inouye M, Small KS, Gwilliam R, Deloukas P, Kwiatkowski DP, Clark TG (2007) A genotype calling algorithm for the Illumina Bead Array platform. Bioinformatics 23(20):2741–2746.  https://doi.org/10.1093/bioinformatics/btm443 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic (592):291–297.  https://doi.org/10.17660/ActaHortic.2002.592.41
  38. Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori MT, Schmutz J (2017) The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18(1):225.  https://doi.org/10.1186/s12864-017-3606-9 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100(3-4):535–544.  https://doi.org/10.1007/s001220050070 CrossRefGoogle Scholar
  40. Zhang G, Sebolt A, Sooriyapathirana S, Wang D, Bink M, Olmstead J, Iezzoni A (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6(1):25–36.  https://doi.org/10.1007/s11295-009-0225-x CrossRefGoogle Scholar
  41. Zheng C, Voorrips RE, Jansen J, Hackett CA, Ho J, Bink MC (2016) Probabilistic multilocus haplotype reconstruction in outcrossing tetraploids. Genetics 203(1):119–131.  https://doi.org/10.1534/genetics.115.185579 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lichun Cai
    • 1
  • Travis Stegmeir
    • 1
  • Audrey Sebolt
    • 1
  • Chaozhi Zheng
    • 2
  • Marco C. A. M. Bink
    • 3
  • Amy Iezzoni
    • 1
  1. 1.Department of HorticultureMichigan State UniversityEast LansingUSA
  2. 2.BiometrisWageningen University and ResearchWageningenThe Netherlands
  3. 3.Research & Technology CentreHendrix GeneticsBoxmeerThe Netherlands

Personalised recommendations