Relationship between the Ni hyperaccumulator Alyssum murale and the parasitic plant Orobanche nowackiana from serpentines in Albania

  • Aida Bani
  • Dolja Pavlova
  • Emile Benizri
  • Seit Shallari
  • Liri Miho
  • Marjol Meco
  • Edmira Shahu
  • Roger Reeves
  • Guillaume Echevarria
Special Feature Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology
  • 39 Downloads

Abstract

Orobanche nowackiana Markgr. is the only parasitic flowering plant in Europe which is an obligate serpentinophyte. This plant parasitizes the Ni hyperaccumulator Alyssum murale Waldst. & Kit. which grows in many areas including serpentine slopes of Mt. Komjan (Albania). The aims of the study were to investigate this host/parasite relationship from a biogeochemical point of view in order to evaluate: (1) the metal accumulation in different parts of the parasite and host plants and (2) the effect of Orobanche infection on host growth. Soil and plant samples of A. murale and O. nowackiana were analyzed for elemental concentrations after acid digestion using inductively coupled plasma atomic emission spectrometry (Ca, Mg, Fe, Ni, Cr, Co, Zn, Cu, Mn, Na, Al), colorimetry (for N and P), and flame photometry (for K). Individuals of A. murale, both infected and healthy, showed slight differences in their composition of essential elements (N, P, K) and of some micronutrients. The parasite had higher P, K, Na, and lower N, Ca, Mg, Ni, Zn, Co, Mn and Al concentrations than the host. Orobanche nowackiana is a Ni accumulator with 299 mg kg−1 in the leaves. Hyperaccumulation of Ni by A. murale did not prevent attack by O. nowackiana. After infection there was a decline in Ni concentration and the dry weight of all organs of the host, thus reducing the biomass yield and consequently Ni phytoextraction yield of A. murale. This infection could be a potential threat to the use of A. murale for Ni agromining.

Keywords

Alyssum murale Biomass Metal accumulation Parasitic plant Phytoextraction yields 

Notes

Acknowledgements

We would like to acknowledge the technical team of “Laboratoire Sols et Environnement”, Nancy, France. The authors also wish to thank Prof. Dr. Alfred Mullaj for help with identifying the sampling area of Orobanche nowackiana.

References

  1. Andreev NI (1930) Orobanche on sunflower in Don and Armavir regions in 1927–28. Caucasus Plant Prot St Bull 6–7:173–184Google Scholar
  2. Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68.  https://doi.org/10.1111/j.1469-8137.1994.tb04259.x CrossRefGoogle Scholar
  3. Bani A (2018) Element case studies: Nickel. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals, mineral resource reviews. Springer International Publishing, New York.  https://doi.org/10.1007/978-3-319-61899-9_12 Google Scholar
  4. Bani A, Echevarria G, Sulce S, Morel JL, Mullaj A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89CrossRefGoogle Scholar
  5. Bani A, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2009) Ni hyperaccumulation by Brassicaceae in serpentine soils of Albania and NW Greece. Northeast Nat 16:385–404CrossRefGoogle Scholar
  6. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by species of Alyssum and Thlaspi (Brassicaceae) from the ultramafics of Balkans. Botanica Serbica 34:3–14Google Scholar
  7. Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresenius Environ Bull 22:1792–1801Google Scholar
  8. Bani A, Echevarria G, Montarges-Pelletier E, Gjoka F, Sulce S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186:4431–4442.  https://doi.org/10.1007/s10661-014-3709-6 CrossRefPubMedGoogle Scholar
  9. Bani A, Echevarria G, Zhang X, Laubie B, Morel JL, Simonnot MO (2015a) The effect of plant density in nickel phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77.  https://doi.org/10.1071/BT14285 Google Scholar
  10. Bani A, Echevarria G, Sulçe S, Morel JL (2015b) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127.  https://doi.org/10.1080/15226514.2013.862204 CrossRefGoogle Scholar
  11. Barina Z, Pifko D (2008) Additions and amendments to the flora of Albania. Willdenowia 38:455–464.  https://doi.org/10.3372/wi.38.38206 CrossRefGoogle Scholar
  12. Barker ER, Press MC, Scholes JD, Quick WP (1996) Interactions between the parasitic angiosperm Orobancheae aegyptiaca and its tomato host: growth and biomass allocation. New Phytol 133:637–642.  https://doi.org/10.1111/j.1469-8137.1996.tb01932.x CrossRefGoogle Scholar
  13. Boyd RS, Martens NS, Davis MA (1999) The nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae) is attacked by the parasitic plant Cuscuta californica (Cuscutaceae). Madrono 46:92–99Google Scholar
  14. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  15. Coic Y, Lesaint G, Jean MG (1965) Sur la composition minerale des especes et organes vegetaux et leur determinism. Ann Physiol Veg (Paris) 5:293–301 (In French with English summary) Google Scholar
  16. Delavault P (2015) Knowing the parasite: biology and genetics of Orobanche. Helia 38:15–29.  https://doi.org/10.1515/helia-2014-0030 CrossRefGoogle Scholar
  17. Echevarria G (2018) Chapter 8: genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds). Agromining: farming for metals, mineral resource reviews. Springer International Publishing. Germany, In Press.  https://doi.org/10.1007/978-3-319-61899-9_8
  18. Echevarria G, Morel JL, Fardeau JC, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27:1064–1070.  https://doi.org/10.2134/jeq1998.00472425002700050011x CrossRefGoogle Scholar
  19. Echevarria G, Massoura ST, Sterckeman T, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25:643–651.  https://doi.org/10.1897/05-051R.1 CrossRefPubMedGoogle Scholar
  20. Edmondson JR (1992) Review of recent taxonomic work on European serpentinicolous phanerogams. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, Hampshire, UKGoogle Scholar
  21. Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng THB, Tang YT, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–25CrossRefGoogle Scholar
  22. Fernández-Aparicio M, Flores F, Rubiales D (2016) The effect of Orobanche crenata infection severity in Faba bean, Field Pea, and Grass Pea productivity. Front Plant Sci 7:1–8.  https://doi.org/10.3389/fpls.2016.01409 Google Scholar
  23. Foley MJY (2000) The taxonomic position of Orobanche rechingeri Gilli (Orobanchaceae) in relation to Orobanche nowackiana Markgr. Candollea 55:269–276Google Scholar
  24. Gevezova M, Dekalska T, Stoyanov K, Ts Hristeva, Kostov K, Batchvarova R, Denev I (2012) Recent advances in Broomrapes research. J BioSci Biotech 1:91–105Google Scholar
  25. Harrison S, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press, BerkeleyGoogle Scholar
  26. Hartvig P (1991) Orobanche. In: Strid A, Tan K (eds) Mountain Flora of Greece, vol 2. Edinburgh University Press, EdinburghGoogle Scholar
  27. Hibberd JM, Quick WP, Press MC, Scholes JD, Jeschke WD (1999) Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ 22:937–947CrossRefGoogle Scholar
  28. ISO 11261 (1995/2016) Soil quality-determination of total nitrogen–modified Kjeldahl method, determination of calcium and magnesium in soil extracts by flame atomic absorption spectrophotometry (FAAS)Google Scholar
  29. ISO 9964-3 (1993/2014) Water quality-determination of sodium and potassium-flame emission spectrometric method; LNO168/10/1 Fred Kruis Environmental Chemistry-Selected methods for Water Quality AnalysisGoogle Scholar
  30. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca RatonGoogle Scholar
  31. Kroschel J (2001) A technical manual of parasitic weed Research and Extension. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  32. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, BerkeleyGoogle Scholar
  33. Labrousse P, Delmail D, Arnaud MC, Thalouarn P (2010) Mineral nutrient concentration influences sunflower infection by broomrape (Orobanche cumana). Botany 88:839–849CrossRefGoogle Scholar
  34. Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  35. Lombini A, Dinelli E, Ferrari C, Simoni A (1998) Plant-soil relationships in the serpentinite screes of Mt Prinzera (Northern Appenines, Italy). J Geochem Explor 64:19–33CrossRefGoogle Scholar
  36. Manceau A, Boisset MC, Sarret G, Hazemann JL, Mench M, Cambier P, Prost R (1996) Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ Sci Technol 30:540–1552CrossRefGoogle Scholar
  37. Markgraf F (1926) Bemerkenswerte neue Pflanzenarten aus Albanien. Ber Deutsch Bot Ges 44:420–432 (In German) Google Scholar
  38. Mauromicale G, Lo Monaco A, Longo AMG (2008) Effect of Branched Broomrape (Orobanche ramosa) infection on the growth and photosynthesis of tomato. Weed Sci 56:574–581CrossRefGoogle Scholar
  39. McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalizationin Alyssum murale. Environ Sci Technol 39:2210–2218CrossRefPubMedGoogle Scholar
  40. Mullaj A, Shehu J, Tan K, Imeraj A (2010) New records for the Albanian flora. Botanica Serbica 34:163–167Google Scholar
  41. Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel J-L, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69.  https://doi.org/10.1007/s11104-016-2859-4 CrossRefGoogle Scholar
  42. O’Dell RE, Claassen VP (2011) Restoration and revegetation of harsh soils. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley, pp 383–413Google Scholar
  43. Pr-EN 14672 (2005) Characterization of sludges-determination of total phosphorus; ISO 6878:2004 Water quality-determination of phosphorus-ammonium molybdate spectrometric method; LNO168/10/1 Fred Kruis environmental chemistry-selected methods for water quality analysisGoogle Scholar
  44. Pr-EN 16169 (2011E) Sludge, treated biowaste and soil-determination of Kjeldahl nitrogen; ISO 7150:1984- Water quality-determination of ammonium-manual spectrometric method; LNO168/10/1 Fred Kruis Environmental chemistry selected methods for water quality analysisGoogle Scholar
  45. Press MC, Graves JD, Stewart GR (1990) Physiology of the interaction of angiosperm parasites and their higher plant hosts. Plant Cell Environ 13:91–104CrossRefGoogle Scholar
  46. Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) Soils. Intercept Ltd., Andover, pp 253–277Google Scholar
  47. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria, Goncharova N (ed) Phytoremediation of Metal-Contaminated Soils. NATO Science Series (IV) Earth Environ Sci 68:25–52Google Scholar
  48. Reeves RD, Baker AJM, Kelepertsis A (1997) The distribution and biogeochemistry of some serpentine plants of Greece. In: Jaffré T, Reeves RD, Becquer T (eds) Écologie des milieux sur roches ultramafiques et sur sols métallifères, Documents Scientifiques et Techniques, III/2. ORSTOM, Nouméa, New Caledonia, pp 205–207 Google Scholar
  49. Shallari S, Echevarria G, Schwartz C, Morel JL (2001) Availability of nickel in soils for the hyperaccumulator Alyssum murale Waldst. & Kit. S Afr J Sci 97:568–570Google Scholar
  50. Singh JH, Rai TB (1971) Studies on the physiology of host-parasite relationship in Orobanche. II. Growth and mineral nutrition of host and parasite. Physiol Plant 25:425–431CrossRefGoogle Scholar
  51. Stevanović V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I.—obligate serpentine endemics. Plant Syst Evol 242:149–170.  https://doi.org/10.1007/s00606-003-0044-8 CrossRefGoogle Scholar
  52. Uhlich H, Pusch J, Barthel K (1995) Die Sommerwurzarten Europas. Westarp Wissenschaften, MagdeburgGoogle Scholar
  53. van der Ent A, Baker AJM, Reeves RD, Chaney RL (2015) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780CrossRefPubMedGoogle Scholar

Copyright information

© The Ecological Society of Japan 2018

Authors and Affiliations

  1. 1.Environmental Department, Faculty of Agronomy and EnvironmentAgricultural University of TiranaTiraneAlbania
  2. 2.Department of Botany, Faculty of BiologyUniversity of SofiaSofiaBulgaria
  3. 3.Laboratoire Sols et EnvironnementUniversité de Lorraine-INRAVandoeuvre-Lès-Nancy CedexFrance
  4. 4.Department of Biology, Faculty of Natural ScienceUniversity of TiranaTiraneAlbania
  5. 5.Department of Economy and Agrarian Policy, Faculty of Economy and AgribusinessAgricultural University of TiranaTiraneAlbania
  6. 6.Palmerston NorthNew Zealand

Personalised recommendations