Skip to main content
Log in

Geometric morphometric analysis of the freshwater prawn Macrobrachium borellii (Decapoda: Palaemonidae) at a microgeographical scale in a floodplain system

  • Original Article
  • Published:
Ecological Research

Abstract

Morphometric studies are useful for delineating the shapes of various populations and species over geographical ranges and as evidence of regional differences in crustaceans. Hydrological fluctuations in a floodplain system modulate the dispersal and presence of decapods among habitats and constitute an important macrofactor that regulate other environmental variables and which could explain the richness, distribution and abundance of organisms that live in these systems. Morphological variations among populations of the freshwater prawn Macrobrachium borellii in a floodplain system at a microgeographical scale were studied using geometric morphometrics. Carapace structure was represented using 16 digitised landmarks. Allometry and sexual dimorphism was tested. Variation in shape was explored via Principal Component Analysis. Canonical Variate Analyses was applied to compare the differences in shape between species’ populations. The correlations and covariations among shapes and hydrometric level, current velocity, geographical location and hydrologic distances were analysed. The average carapace shape was different between sexes in all sites. Populations that were near each other in terms of hydrological distance had similar shapes, but all of the populations differed in shape from the farthest population. The environmental variables were not good predictors of the carapace shape. Instead, the shape was strongly related to the hydrologic distance and geographical location. The swimming characteristics of these prawns and their passive movements, together with the dynamics of a floodplain system, explain the low morphological variation between populations in this study. The dynamic characteristics of the system influence the dispersal of the prawns and allow populations to remain connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24:7–14

  • Anastasiadou Ch, Leonardos ID (2008) Morphological variation among populations of Atyaephyra desmarestii (Millet, 1831) (Decapoda, Natantia, Atyidae) from freshwater habitats of north-western Greece. J Crustac Biol 28:240–247

    Article  Google Scholar 

  • Anastasiadou Ch, Liasko R, Leonardos ID (2009) Biometric analysis of lacustrine and riverine populations of Palaemonetes antennarius (H-Milne Edwards, 1837) (Crustacea, Decapoda, Palaemonidae) from north-western Greece. Limnologica 39:244–254

    Article  CAS  Google Scholar 

  • Anger K (2013) Neotropical Macrobrachium (Caridea: Palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. J Crustac Biol 33:151–183

    Article  Google Scholar 

  • Arrington DA, Winemiller KO, Layman CA (2005) Community assembly at the patch scale in a species-rich tropical river. Oecologia 144:157–167

    Article  PubMed  Google Scholar 

  • Barría EM, Sepúlveda RD, Jara CG (2011) Morphologic variation in Aegla Leach (Decapoda: Reptantia: Aeglidae) from central-southern Chile: interspecific differences, sexual dimorphism, and spatial segregation. J Crustac Biol 31:231–239

    Article  Google Scholar 

  • Bennetts RE, Nichols JD, Lebreton JD (2003) Methods for estimating dispersal probabilities and related parameters using marked animals. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) dispersal. Oxford University Press, Oxford, pp 3–17

    Google Scholar 

  • Bissaro FG, Gomes JL, Madeira Di Beneditto AP (2012) Morphometric variation in the shape of the carapace of shrimp Xiphopenaeus kroyeri on the east coast of Brazil. J Mar Biol Assoc UK 93(03):683–691

  • Bock W (1999) Functional and evolutionary explanations in morphology. Neth J Zool 49(1):45–65

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    Google Scholar 

  • Boschi EE (1981) Decapoda Natantia. Fauna de Agua Dulce de la República Argentina. FECIC 26:1–61

    Google Scholar 

  • Chambers PA, Prepas EE, Hamilton HR, Bothwell ML (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol Appl 1:249–257

    Article  Google Scholar 

  • Collins P (2001) Relative growth of the freshwater prawn Macrobrachium borellii (Nobili 1896) (Decapoda: Palaemonidae). Nauplius 9:53–60

    Google Scholar 

  • Collins PA, Williner V, Giri F (2007) Littoral communities: Macrocrustaceans. In: Iriondo MH, Paggi JC, Parma MJ (eds) The middle Parana River, limnology of a subtropical wetland. Springer-Verlag, Berlin, pp 277–302

    Chapter  Google Scholar 

  • Corti M (1993) Geometric morphometrics: an extension of the revolution. Trends Ecol Evol 8:302–303

    Article  PubMed  CAS  Google Scholar 

  • Darlington RB, Weinberg SL, Walberg HJ (1973) Canonical variate analysis and related techniques. Rev Educ Res 43:443–454

    Article  Google Scholar 

  • Fernandez D, Collins P (2002) Supervivencia de cangrejos en ambientes dulceacuícolas inestables. Nat Neotrop 33:81–84

    Google Scholar 

  • García-Dávila CR, Magalhães C, Guerrero JCH (2005) Morphometric variability in populations of Palaemonetes spp. (Crustacea, Decapoda, Palaemonidae) from the Peruvian and Brazilian Amazon Basin. Iheringia Sér Zool 95:327–334

    Article  Google Scholar 

  • Giri F, Collins PA (2004) A geometric morphometric analysis of two sympatric species of the family Aeglidae (Crustacea, Decapoda, Anomura) from the La Plata basin. Ital J Zool 71:85–88

    Article  Google Scholar 

  • Giri F, Loy A (2008) Size and shape variation of two freshwater crabs in Argentinean Patagonia: the influence of sexual dimorphism, habitat, and species interactions. J Crustac Biol 28:37–45

    Article  Google Scholar 

  • Gomes LC, Bulla CK, Agostinho AA, Vasconcelos LP, Miranda LE (2012) Fish assemblage dynamics in a neotropical floodplain relative to aquatic macrophytes and the homogenizing effect of a flood pulse. Hydrobiologia 685:97–107

    Article  Google Scholar 

  • Hartnoll AL (1985) Growth, sexual maturity and reproductive output. In: Wenner AM (ed) Crustacean: factors in adult growth. Rotterdam AA, Balkema, pp 101–128

    Google Scholar 

  • Huxley JS (1932) Problems of relative growth. The John Hopkins University Press, Baltimore (276 pp)

    Google Scholar 

  • Idaszkin YL, Márquez F, Nocera AC (2013) Habitat-specific shape variation in the carapace of the crab Cyrtograpsus angulatus. J Zool 290:117–126

    Article  Google Scholar 

  • Jenkins KM, Boulton AJ (2003) Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84:2708–2723

    Article  Google Scholar 

  • José de Paggi S, Paggi JC (2007) Zooplancton. In: Iriondo MH, Paggi JC, Parma MJ (eds) The middle Parana River, limnology of a subtropical wetland. Springer-Verlag, Berlin, pp 229–245

    Chapter  Google Scholar 

  • Kapiris K, Thessalou-Legaki M (2001) Sex-related variability of rostrum morphometry of Aristeus antennatus (Decapoda: Aristeidae) from the Ionian Sea (Eastern Mediterranean, Greece). Hydrobiologia 449:123–130

    Article  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2013) Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Associazione Teriologica Italiana Hystrix. Ital J Mammal 24:15–24

    Google Scholar 

  • Konan KM, Adépo-Gourène AB, Ouattaraa A, Nyingy WD, Gourène G (2010) Morphometric variation among male populations of freshwater shrimp Macrobrachium vollenhovenii Herklots, 1851 from Côte d’Ivoire Rivers. Fish Res 103:1–8

    Article  Google Scholar 

  • Mayora G, Devercelli M, Giri F (2013) Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717:51–63

    Article  CAS  Google Scholar 

  • McGhee Jr GR (1999) Theoretical morphology: the concepts and its applications. Columbia University Press, New York (316 pp)

    Google Scholar 

  • Montoya JV (2003) Freshwater shrimps of the genus Macrobrachium associated with roots of Eichhornia crassipes (Water Hyacinth) in the Orinoco Delta (Venezuela). Carib J Sci 39:155–159

    Google Scholar 

  • Montoya JV, Roelke DL, Winemiller KO, Cotner JB, Snider JA (2006) Hydrological seasonality and benthic algal biomass in a neotropical floodplain river. J N Am Benthol Soc 25(1):157–170

  • Morrone JJ, Lopretto EC (1995) Parsimony analysis of endemicity of freshwater Decapoda (Crustacea: Maclacostraca) from southern South America. Neotropica 41:3–8

    Google Scholar 

  • Neiff JJ, Poi de Neiff A, Casco S (2001) The effect of prolonged floods on Eichhornia crassipes growth in Paraná River floodplain lakes. Acta Limnol Bras 3:51–60

    Google Scholar 

  • O’Reilly KM, Horn MH (2004) Phenotypic variation among populations of Atherinops affinis (Atherinopsidae) with insights from a geometric morphometric analysis. J Fish Biol 64:1117–1135

    Article  Google Scholar 

  • Olden JD, Hoffman AL, Monroe JB, Poff NL (2004) Movement behaviour and dynamics of an aquatic insect larva in a stream benthic landscape. Can J Zool 82:1135–1146

    Article  Google Scholar 

  • Poff NL, Ward JV (1992) Heterogeneous currents and algal resources mediate in situ foraging activity of a mobile stream grazer. Oikos 65:465–478

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. BioSience 47:769–784

    Article  Google Scholar 

  • Ringuelet RA (1949) Camarones y cangrejos de la zona de Goya (Sergéstidos, Palamonidae y Trichodactylidae). Notas Mus La Plata Zool 14:79–109

    Google Scholar 

  • Rohlf FJ (2006, 2007, 2013) Tps series. Department of Ecology and Evolution, State University of New York at Stony Brook, New York. http://life.bio.sunysb.edu/morph/

  • Rohlf FJ, Corti M (2000) The use of two-block partial least-squares to study covariation in shape. Syst Biol 49:740–753

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Article  Google Scholar 

  • Rossi L, Cordoviola E, Parma MJ (2007) Fishes. In: Iriondo MH, Paggi JC, Parma MJ (eds) The middle Parana River, limnology of a subtropical wetland. Springer-Verlag, Berlin, pp 305–325

    Chapter  Google Scholar 

  • Rufino M, Abelló P, Yule AB (2006) Geographic and gender shape differences in the carapace of Liocarcinus depurator (Brachyura: Portunidae) using geometric morphometrics and the influence of a digitizing method. J Zool 269:458–465

    Article  Google Scholar 

  • Seilacher A (1970) Arbeitskonzept zur Konstruktionsmorphologie. Lethaia Oslo 3:393–396

    Article  Google Scholar 

  • Silva IC, Hawkins SJ, Paula J (2009) A comparison of population differentiation in two shore crab species with contrasting distribution along the Portuguese coast, using two morphological methodologies. Mar Freshw Res 60:833–844

    Article  Google Scholar 

  • Silva IC, Alves MJ, Paula J, Hawkins SJ (2010) Population differentiation of the shore crab Carcinus maenas (Brachyura: Portunidae) on the southwest English coast based on genetic and morphometric analyses. Sci Mar 74:435–444

    Article  Google Scholar 

  • Srijaya TC, Pradeep PJ, Mithun S, Hassan A, Shaharom F, Chatterji A (2010) A new record on the morphometric variations in the populations of Horseshoe Crab (Carcinoscorpius rotundicauda Latreille) obtained from two different ecological habitats of Peninsular Malaysia. Our Nat 8:204–211

    Google Scholar 

  • Tzeng TD, Chiu CS, Yeh SY (2001) Morphometric variation in red-spot prawn (Metapenaeopsis barbata) in different geographic waters of Taiwan. Fish Res 53:211–217

    Article  Google Scholar 

  • Walker I, Ferreira MJN (1985) On the populations dynamics and ecology of the shrimp species (Crustacea, Decapoda, Natantia) in the Central Amazonian river Taruma-Mirim. Oecologia 66:264–270

    Google Scholar 

  • Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 47:517–539

    Article  Google Scholar 

  • Williner V, Giri F, Collins PA (2009) Los crustáceos decápodos dulceacuícolas en Argentina. FABICIB 13:107–125

    Article  Google Scholar 

  • Williner V, Giri F, Collins PA (2010) Metapopulations of Decapods in the floodplain of Parana River, South America. In: Alvarez MA (ed) Floodplains: physical geography, ecology and societal interactions. Nova Science Publication, New York, pp 179–199

    Google Scholar 

  • Winemiller KO (2004) Floodplain river food webs: generalizations and implications for fisheries management. In: Welcomme RL, Petr T (eds) Proceedings of the second international symposium on the management of large rivers for fisheries. Food and Agriculture Organization & Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok, pp 285–309

    Google Scholar 

  • Zimmermann G, Bosc P, Valade P, Cornette R, Améziane N, Debat V (2012) Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool (Stockholm) 93:492–500

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are given to Cristian Debonis and Esteban Creus for their field assistance and to Veronica Williner for his reviews and comments. This work was supported by grants from the Project PICT (Agencia Nacional de Promoción Científica y Tecnológica): “Diversidad biológica en ambientes dulceacuícolas a través del gradiente este-oeste de argentina: rotíferos, microcrustaceos y macrocrustaceos como grupos de estudio”. ANPCyT. Dr. Pablo A. Collins. 2007-01360. 01/01/2009-31/12/2011. CAI+D PI 2011, Title: ¿Adaptaciones y/o ajustes a ambientes acuáticos? Aspectos morfológicos, fisiológicos y genéticos en decápodos dulceacuícolas. 2013–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Torres.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, M.V., Giri, F. & Collins, P.A. Geometric morphometric analysis of the freshwater prawn Macrobrachium borellii (Decapoda: Palaemonidae) at a microgeographical scale in a floodplain system. Ecol Res 29, 959–968 (2014). https://doi.org/10.1007/s11284-014-1184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1184-8

Keywords

Navigation