Advertisement

The missing link in image quality assessment in digital dental radiography

  • Kazutoshi OkamuraEmail author
  • Kazunori Yoshiura
Review Article

Abstract

Digital radiography is gaining popularity among general dental practitioners. It includes digital intraoral radiography, digital panoramic radiography, digital cephalography, and cone-beam computed tomography. In this study, we focused on the methods to assess image quality of these techniques, except for digital cephalography, in the light of historical issues. We stressed on the importance of the development of a standardized phantom and quantitative analysis of diagnostic image quality using it, especially in the aspect of psychophysical properties of these digital systems. There is no missing link in the image quality assessment in digital intraoral radiography and cone-beam computed tomography in dental use. However, there are missing links between physical and diagnostic image qualities in panoramic radiography. The development of a semi-standardized phantom and the corresponding quantitative analysis method for image quality may be required in digital panoramic radiography. Quantitative image quality assessment using a standardized phantom will also be promising in the future artificial intelligence era.

Keywords

Image quality Patient dose Digital Dental Radiography 

Notes

Compliance with ethical standards

Conflict of interest

Kazutoshi Okamura and Kazunori Yoshiura declare that they have no conflict of interest.

Human and animal right statements

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    ICRP. The 2007 recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP. 2007;37:1–332.Google Scholar
  2. 2.
    Gröndahl HG. Digital radiology in dental diagnosis: a critical view. Dentomaxillofac Radiol. 1992;21:198–202.CrossRefGoogle Scholar
  3. 3.
    Molander B, Gröndahl HG, Ekestubbe A. Quality of film-based and digital panoramic radiography. Dentomaxillofac Radiol. 2004;33:32–6.CrossRefGoogle Scholar
  4. 4.
    Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas L, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) Part I: on subjective image quality. Eur J Radiol. 2010;75:265–9.CrossRefGoogle Scholar
  5. 5.
    Takeshita Y, Shimizu M, Okamura K, Yoshida S, Weerawanich W, Tokumori K, et al. A new method to evaluate image quality of CBCT images quantitatively without observers. Dentomaxillofac Radiol. 2017;46:20160331.  https://doi.org/10.1259/dmfr.20160331.CrossRefGoogle Scholar
  6. 6.
    Metz CE, Goodenough DJ, Rossmann K. Evaluation of receiver operating characteristic curve data in terms of information theory, with applications in radiography. Radiology. 1973;109:297–303.CrossRefGoogle Scholar
  7. 7.
    Tsapaki V. Radiation protection in dental radiology—recent advances and future directions. Phys Med. 2017;44:222–6.CrossRefGoogle Scholar
  8. 8.
    Verdun FR, Racine D, Ott JG, Tapiovaara MJ, Toroi P, Bochud FO, et al. Image quality in CT: from physical measurements to model observers. Phys Med. 2015;31:823–43.CrossRefGoogle Scholar
  9. 9.
    Yoshiura K, Welander U, Kanda S. Theoretical consideration of radiological caries diagnosis: correlation between physical properties and diagnostic accuracy. Dent Jpn. 2005;41:101–6.Google Scholar
  10. 10.
    Workman A, Brettle DS. Physical performance measures of radiographic imaging systems. Dentomaxillofac Radiol. 1997;26:139–46.CrossRefGoogle Scholar
  11. 11.
    Metz CE, Wagner RF, Daoi K, Brown DG, Nishikawa RM, Myers KJ. Toward consensus on quantitative assessment of medical imaging systems. Med Phys. 1995;22:1057–61.CrossRefGoogle Scholar
  12. 12.
    Takeshita Y, Shimizu M, Jasa GR, Weerawanich W, Okamura K, Yoshida S, et al. Prediction of detectability of the mandibular canal by quantitative image quality evaluation using cone beam CT. Dentomaxillofac Radiol. 2018;47:20170369.  https://doi.org/10.1259/dmfr.20170369.CrossRefGoogle Scholar
  13. 13.
    Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Jasa GR, et al. Evaluation of cone-beam computed tomography diagnostic image quality using cluster signal-to-noise analysis. Oral Radiol. 2018;35:59.  https://doi.org/10.1007/s11282-018-0325-0.CrossRefGoogle Scholar
  14. 14.
    Mouyen F, Benz C, Sonnabend E, Lodter JP. Presentation and physical evaluation of RadioVisioGraphy. Oral Surg Oral Med Oral Pathol. 1989;68:238–42.CrossRefGoogle Scholar
  15. 15.
    Tyndall DA, Ludlow JB, Platin E, Nair M. A comparison of Kodak Ektaspeed Plus film and the Siemens Sidexis digital imaging system for caries detection using receiver operating characteristic analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:113–8.CrossRefGoogle Scholar
  16. 16.
    Kullendorff B, Nilsson M, Rohlin M. Diagnostic accuracy of direct digital dental radiography for the detection of periapical bone lesions: overall comparison between conventional and direct digital radiography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:344–50.CrossRefGoogle Scholar
  17. 17.
    Hintze H, Wenzel A, Jones C. In vitro comparison of D- and E-speed film radiography, RVG, and visualix digital radiography for the detection of enamel approximal and dentinal occlusal caries lesions. Caries Res. 1994;28:363–7.CrossRefGoogle Scholar
  18. 18.
    Yoshiura K. Image quality assessment of digital intraoral radiography—perception to caries diagnosis. Jpn Dent Sci Rev. 2012;48:42–7.CrossRefGoogle Scholar
  19. 19.
    Yoshiura K, Nakayama E, Shimizu M, Goto TK, Chikui T, Kawazu T, et al. Effects of the automatic exposure compensation on the proximal caries diagnosis. Dentomaxillofac Radiol. 2005;34:140–4.CrossRefGoogle Scholar
  20. 20.
    Yoshiura K, Okamura K, Tokumori K, Nakayama E, Chikui T, Goto TK, et al. Correlation between diagnostic accuracy and perceptibility. Dentomaxillofac Radiol. 2005;34:350–2.CrossRefGoogle Scholar
  21. 21.
    Yoshiura K, Stamatakis H, Shi XQ, Welander U, McDavid WD, Kristoffersen J, et al. The perceptibility curve test applied to direct digital dental radiography. Dentomaxillofac Radiol. 1998;27:131–5.CrossRefGoogle Scholar
  22. 22.
    Yoshiura K, Welander U, McDavid WD, Li G, Shi XQ, Nakayama E, et al. Comparison of the psychophysical properties of various intraoral film and digital systems by means of the perceptibility curve test. Dentomaxillofac Radiol. 2004;33:98–102.CrossRefGoogle Scholar
  23. 23.
    Okamura K, Yoshiura K, Tatsumi M, Kawazu T, Chikui T, Shimizu M, et al. A new method for evaluating perceptible contrast information in digital intraoral radiographic systems. Oral Radiol. 2011;27:98–101.CrossRefGoogle Scholar
  24. 24.
    Yoshiura K, Kawazu T, Chikui T, Tatsumi M, Tokumori K, Tanaka T, et al. Assessment of image quality in dental radiography, part 1: phantom validity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:115–22.CrossRefGoogle Scholar
  25. 25.
    Yoshiura K, Kawazu T, Chikui T, Tatsumi M, Tokumori K, Tanaka T, et al. Assessment of image quality in dental radiography, part 2: optimum exposure conditions for detection of small mass changes in six intraoral radiography systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:123–9.CrossRefGoogle Scholar
  26. 26.
    Barrett HH, Yao J, Rolland JP, Myers KJ. Model observers for assessment of image quality. Proc Natl Acad Sci U S A. 1993;90:9758–65.CrossRefGoogle Scholar
  27. 27.
    Yoshiura K, Stamatakis HC, Welander U, McDavid WD, Shi XQ, Ban S, et al. Prediction of perceptibility curves of direct digital intraoral radiographic systems. Dentomaxillofac Radiol. 1999;28:224–31.CrossRefGoogle Scholar
  28. 28.
    Yoshida S, Okamura K, Tokumori K, Shimizu M, Takeshita Y, Weerawanich W, et al. Development of a new method for evaluating radiographic image quality using just noticeable differences. Dental Radiol. 2016;56:27–322 (In Japanese).Google Scholar
  29. 29.
    Sabarudin A, Tiau YJ. Image quality assessment in panoramic dental radiography: a comparative study between conventional and digital systems. Quant Imaging Med Surg. 2013;3:43–8.Google Scholar
  30. 30.
    Parissis N, Angelopoulos C, Mantegari S, Karamanis S, Masood F, Tsirlis A. A comparison of panoramic image quality between a digital radiography storage phosphor system and a film-based system. J Contemp Dent Pract. 2010;11:E009–16.Google Scholar
  31. 31.
    Gijbels F, Sanderink G, Bou Serhal C, Pauwels H, Jacobs R. Organ doses and subjective image quality of indirect digital panoramic radiography. Dentomaxillofac Radiol. 2001;30:308–13.CrossRefGoogle Scholar
  32. 32.
    Tatsumi M, Yoshiura K, Yuasa K, Tabata O, Nakayama E, Kawazu T, et al. Clinical evaluation of "Veraviewepocs" digital panoramic X-ray system. Int J Comput Dent. 2000;3:183–95.Google Scholar
  33. 33.
    Svenson B, Larsson L, Båth M. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering. Acta Odontol Scand. 2016;74:229–35.CrossRefGoogle Scholar
  34. 34.
    Shiojima M, Naitoh M. Development of test phantom for measuring the image layer in rotational panoramic radiography. Dent Jpn. 1995;32:96–9.Google Scholar
  35. 35.
    Gavala S, Donta C, Tsiklakis K, Boziari A, Kamenopoulou V, Stamatakis HC. Radiation dose reduction in direct digital panoramic radiography. Eur J Radiol. 2009;71:42–8.CrossRefGoogle Scholar
  36. 36.
    Katsumata A, Ogawa K, Inukai K, Matsuoka M, Nagano T, Nagaoka H, et al. Initial evaluation of linear and spatially oriented planar images from a new dental panoramic system based on tomosynthesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:375–82.CrossRefGoogle Scholar
  37. 37.
    Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:20140224.  https://doi.org/10.1259/dmfr.20140224.CrossRefGoogle Scholar
  38. 38.
    Minami S, Ohnishi T, Sano T, Sugiura K, Nakayama E. Comparison between cone-beam CT and multidetector-row CT by ROC analysis regarding diagnostic accuracy for artificial alveolar bone defects in the mandibular molar region. Oral Radiol. 2015;31:97–104.CrossRefGoogle Scholar
  39. 39.
    Okano T, Sur J. Radiation dose and protection in dentistry. Jpn Dent Sci Rev. 2010;46:112–21.CrossRefGoogle Scholar
  40. 40.
    Hayashi T, Arai Y, Chikui T, Hayashi-Sakai S, Honda K, Indo H, et al. Clinical guidelines for dental cone-beam computed tomography. Oral Radiol. 2018;34:89–104.CrossRefGoogle Scholar
  41. 41.
    Torgersen GR, Hol C, Moystad A, Hellen-Halme K, Nilsson M. A phantom for simplified image quality control of dental cone beam computed tomography units. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:603–11.CrossRefGoogle Scholar
  42. 42.
    Gong H, Yu L, Leng S, Dilger S, Zhou W, Ren L, et al. Correlation between model observers in uniform background and human observers in patient liver background for a low-contrast detection task in CT. Proc SPIE Int Soc Opt Eng. 2018;10577:105770M.  https://doi.org/10.1117/12.2294955.Google Scholar
  43. 43.
    Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Yoshiura K. Cluster signal-to-noise analysis for evaluation of the information content in an image. Dentomaxillofac Radiol. 2018;47:20170147.  https://doi.org/10.1259/dmfr.20170147.CrossRefGoogle Scholar
  44. 44.
    Jasa GR, Shimizu M, Okamura K, Tokumori K, Takeshita Y, Weerawanich W, et al. Effects of exposure parameters and slice thickness on detecting clear and unclear mandibular canals using cone beam CT. Dentomaxillofac Radiol. 2017;46:20160315.  https://doi.org/10.1259/dmfr.20160315.CrossRefGoogle Scholar
  45. 45.
    Izawa M, Harata Y, Shiba N, Koizumi N, Ozawa T, Takahashi N, et al. Establishment of local diagnostic reference levels for quality control in intraoral radiography. Oral Radiol. 2017;33:38–44.CrossRefGoogle Scholar
  46. 46.
    Ono K, Kondo Y, Ichikawa T, Asada Y. Evaluation of the patient exposure in general radiography for some facilities: comparison with DRL and evaluation of the difference among facilities. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73:556–62 (In Japanese).CrossRefGoogle Scholar
  47. 47.
    Gala HH, Torresin A, Dasu A, Rampado O, Delis H, Girón IH, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). Phys Med. 2017;39:67–72.CrossRefGoogle Scholar
  48. 48.
    Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31:441–50.CrossRefGoogle Scholar
  49. 49.
    Talebi H, Milanfar P. NIMA: neural image assessment. IEEE Trans Image Process. 2018;27:3998–4011.CrossRefGoogle Scholar
  50. 50.
    Brullmann D, Schulze RKW. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol. 2015;44:20140204.  https://doi.org/10.1259/dmfr.20140204.CrossRefGoogle Scholar
  51. 51.
    Hayakawa Y, Eraso FE, Scarfe WC, Farman AG, Nishikawa K, Kuroyanagi K, et al. Technical note: Modulation transfer function analysis of a newly revised rotational panoramic machine. Dentomaxillofac Radiol. 1996;25:302–6.CrossRefGoogle Scholar
  52. 52.
    Nishikawa K, Ooguro T, Kuroyanagi K. Comparisons of physical imaging properties among three kinds of imaging plates used in photostimulable phosphor systems for dental radiography. Bull Tokyo Dent Coll. 2002;43:23–30.CrossRefGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Oral and Maxillofacial Radiology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan

Personalised recommendations