Oral Radiology

, Volume 35, Issue 2, pp 91–100 | Cite as

Principles of the magnetic resonance imaging movie method for articulatory movement

  • Midori YoshidaEmail author
  • Eiichi Honda
  • Erika Ozawa
  • Sayuri Maristela Inoue-Arai
  • Hiroko Ohmori
  • Keiji Moriyama
  • Takashi Ono
  • Tohru Kurabayashi
  • Hozumi Yoshihara
  • Kulthida Nunthayanon Parakonthun
Review Article


Magnetic resonance imaging (MRI) has become a critical tool for dental examination. MRI has many advantages over radiographic examination methods, including the lack of a requirement for patient exposure and the ability to capture high-contrast images of various tissue and organ types. However, MRI also has several limitations, including long examination times and the existence of metallic or motion artifacts. A cardiac imaging method using cine sequences was developed in the 1990s. This technique allows for analysis of heart movement and functional blood flow. Moreover, this method has been applied in dentistry. Recent research involving 3 T MRI has led to the achievement of a temporal resolution of < 10 ms, surpassing the frame rate of typical video recording. The current review introduces the history and principles of the cine sequence method and its application to the oral and maxillofacial regions.


Segmented k-space cine sequence Artifact Pronunciation Teeth 



This study was supported by JSPS KAKENHI Grant Number JP16K1150800.

Compliance with ethical standards

Conflict of interest

Midori Yoshida, Eiichi Honda, Erika Ozawa, Maristela Sayuri Inoue-Arai, Hiroko Ohmori, Keiji Moriyama, Takashi Ono, Tohru Kurabayashi, Hozumi Yoshihara, and Kulthida Nunthayanon Parakonthun declare that they have no conflict of interest.

Research involving human and/or animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Ethical approval

The research was approved by the Institutional Ethical Review Board of the Tokyo Medical and Dental University (Number 1282).


  1. 1.
    Bloch F, Hansen WW, Packard M. Nuclear induction. Phys Rev. 1946;69:127.CrossRefGoogle Scholar
  2. 2.
    Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear moments in a solid. Phys Rev. 1946;69:37–8.CrossRefGoogle Scholar
  3. 3.
    Yoshida M, Honda E. Trends in magnetic resonance imaging research in dentistry. Dent Health Curr Res. 2015;1:2. Scholar
  4. 4.
    Mansfield P, Maudsley AA. Medical imaging by NMR. Br J Radiol. 1977;50:188–94.CrossRefGoogle Scholar
  5. 5.
    Lauterbur PC. Progress in NMR zeugmatography imaging. Philos Trans R Soc Lond B Biol Sci. 1980;289:483–7.CrossRefGoogle Scholar
  6. 6.
    Dubowitz DJ, Tyszka JM, Sewry CA, Moats RA, Scadeng M, Dubowitz V. High resolution magnetic resonance imaging of the brain in the dy/dy mouse with merosin-deficient congenital muscular dystrophy. Neuromuscul Disord. 2000;10:292–8.CrossRefGoogle Scholar
  7. 7.
    Weber T, Vroemen M, Behr V, Neuberger T, Jakob P, Haase A, et al. In vivo high-resolution MR imaging of neuropathologic changes in the injured rat spinal cord. Am J Neuroradiol. 2006;27:598–604.Google Scholar
  8. 8.
    Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology. 1991;178:357–60.CrossRefGoogle Scholar
  9. 9.
    Roberts D, Schenck J, Joseph P, Foster T, Hart H, Pettigrew J, et al. Temporomandibular joint: magnetic resonance imaging. Radiology. 1985;154:829–30.CrossRefGoogle Scholar
  10. 10.
    Katzberg RW. Temporomandibular joint imaging. Radiology. 1989;170:297–307.CrossRefGoogle Scholar
  11. 11.
    Weiger M, Pruessmann KP, Bracher AK, Köhler S, Lehmann V, Wolfram U, et al. High-resolution ZTE imaging of human teeth. NMR Biomed. 2012;25:1144–51.CrossRefGoogle Scholar
  12. 12.
    Shinagawa H, Ono T, Ishiwata Y, Honda E, Sasaki T, Taira M, et al. Hemispheric dominance of tongue control depends on the chewing-side preference. J Dent Res. 2003;82:278–83.CrossRefGoogle Scholar
  13. 13.
    Shinagawa H, Ono T, Honda E, Sasaki T, Taira M, Iriki A, et al. Chewing-side preference is involved in differential cortical activation patterns during tongue movements after bilateral gum-chewing: a functional magnetic resonance imaging study. J Dent Res. 2004;83:762–6.CrossRefGoogle Scholar
  14. 14.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.CrossRefGoogle Scholar
  15. 15.
    Uyama E, Inui S, Hamada K, Honda E, Asaoka K. Magnetic susceptibility and hardness of Au–xPt–yNb alloys for biomedical applications. Acta Biomater. 2013;9:8449–53.CrossRefGoogle Scholar
  16. 16.
    Li HF, Zhou FY, Li L, Zheng YF. Design and development of novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility. Sci Rep. 2016;6:24414. Scholar
  17. 17.
    Waterton JC, Jenkins JP, Zhu XP, Love HG, Isherwood I, Rowlands DJ. Magnetic resonance (MR) cine imaging of the human heart. Br J Radiol. 1985;58:711–6.CrossRefGoogle Scholar
  18. 18.
    Sechtem U, Pflugfelder P, Higgins CB. Quantification of cardiac function by conventional and cine magnetic resonance imaging. Cardiovasc Intervent Radiol. 1987;10:365–73.CrossRefGoogle Scholar
  19. 19.
    Sechtem U, Pflugfelder PW, White RD, Gould RG, Holt W, Lipton MJ, et al. Cine MR imaging: potential for the evaluation of cardiovascular function. AJR. 1987;148:239–46.CrossRefGoogle Scholar
  20. 20.
    Bluemke DA, Boxerman JL, Atalar E, McVeigh ER. Segmented K-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. AJR. 1997;169:395–400.CrossRefGoogle Scholar
  21. 21.
    Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part 1. J Cardiovasc Magn Reson. 2010;12:71.CrossRefGoogle Scholar
  22. 22.
    Gilson WD, Kraitchman DL. Cardiac magnetic resonance imaging in small rodents using clinical 1.5 T and 3.0 T scanners. Methods. 2007;43:35–45.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Kunz RP, Oellig F, Krummenauer F, Oberholzer K, Romaneehsen B, Vomweg TW, et al. Assessment of left ventricular function by breath-hold cine MR imaging: comparison of different steady-state free precession sequences. J Magn Reson Imaging. 2005;21:140–8.CrossRefGoogle Scholar
  25. 25.
    Wintersperger BJ, Nikolaou K, Dietrich O, Rieber J, Nittka M, Reiser MF, et al. Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm. Eur Radiol. 2003;13:1931–6.CrossRefGoogle Scholar
  26. 26.
    Masaki S, Tiede MK, Honda K, Shimada Y, Fujimoto I, Nakamura Y, et al. MRI-based speech production study using a synchronized sampling method. J Acoust Soc Jpn. 1999;20:375–9.CrossRefGoogle Scholar
  27. 27.
    Ng IW, Ono T, Inoue-Arai MS, Honda E, Kurabayashi T, Moriyama K. Differential articulatory movements during Japanese /s/ and /t/ as revealed by MR image sequences with tooth visualization. Arch Oral Biol. 2012;57:749–59.CrossRefGoogle Scholar
  28. 28.
    Shinagawa H, Ono T, Honda E, Masaki S, Shimada Y, Fujimoto I, et al. Dynamic analysis of articulatory movement using magnetic resonance imaging movies: methods and implications in cleft lip and palate. Cleft Palate Craniofac J. 2005;42:225–30.CrossRefGoogle Scholar
  29. 29.
    Sato-Wakabayashi M, Inoue-Arai MS, Ono T, Honda E, Kurabayashi T, Moriyama K. Combined fMRI and MRI movie in the evaluation of articulation in subjects with and without cleft lip and palate. Cleft Palate Craniofac J. 2008;45:309–14.CrossRefGoogle Scholar
  30. 30.
    Inoue MS, Ono T, Honda E, Kurabayashi T. Characteristics of movement of the lips, tongue and velum during a bilabial plosive: a noninvasive study using a magnetic resonance imaging movie. Angle Orthod. 2007;77:612–8.CrossRefGoogle Scholar
  31. 31.
    Inoue MS, Ono T, Honda E, Kurabayashi T, Ohyama K. Application of magnetic resonance imaging movie to assess articulatory movement. Orthod Craniofac Res. 2006;9:157–62.CrossRefGoogle Scholar
  32. 32.
    Ng IW, Ono T, Inoue-Arai MS, Honda E, Kurabayashi T, Moriyama K. Application of MRI movie for observation of articulatory movement during a fricative /s/ and a plosive /t/. Angle Orthod. 2011;81:237–44.CrossRefGoogle Scholar
  33. 33.
    Nunthayanon K, Honda E, Ohmori H, Inoue-Araie MS, Shimazaki K, Kurabayashi T, et al. A pilot study on characterization of articulatory movements during fricative /s/ sound in an anterior open bite subject: a tooth-visualized 3-T MRI movie evaluation. J World Feder Orthod. 2015;4:71–7.CrossRefGoogle Scholar
  34. 34.
    Nunthayanon K, Honda E, Shimazaki K, Ohmori H, Inoue-Arai MS, Kurabayashi T, et al. Use of an advanced 3-T MRI movie to investigate articulation. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119:684–94.CrossRefGoogle Scholar
  35. 35.
    Nunthayanon K, Honda E, Shimazaki K, Ohmori H, Inoue-Arai MS, Kurabayashi T, et al. Differences in velopharyngeal structure during speech among Asians revealed by 3-Tesla magnetic resonance imaging movie mode. Biomed Res Int. 2015;2015:126264.CrossRefGoogle Scholar
  36. 36.
    Ozawa E, Honda EI, Parakonthun KN, Ohmori H, Shimazaki K, Kurabayashi T, et al. Influence of orthodontic appliance-derived artifacts on 3-T MRI movies. Prog Orthod. 2018;19:7.CrossRefGoogle Scholar
  37. 37.
    Jaspan ON, Fleysher R, Lipton ML. Compressed sensing MRI: a review of the clinical literature. Br J Radiol. 2015;88:20150487.CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Shafiei F, Honda E, Takahashi H, Sasaki T. Artifacts from dental casting alloys in magnetic resonance imaging. J Dent Res. 2003;82:602–6.CrossRefGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Midori Yoshida
    • 1
    Email author
  • Eiichi Honda
    • 1
  • Erika Ozawa
    • 2
  • Sayuri Maristela Inoue-Arai
    • 3
  • Hiroko Ohmori
    • 2
  • Keiji Moriyama
    • 3
  • Takashi Ono
    • 2
  • Tohru Kurabayashi
    • 4
  • Hozumi Yoshihara
    • 1
  • Kulthida Nunthayanon Parakonthun
    • 5
  1. 1.Department of Oral and Maxillofacial RadiologyUniversity of Tokushima, Graduate SchoolTokushimaJapan
  2. 2.Department of Orthodontic ScienceTokyo Medical and Dental University, Graduate SchoolTokyoJapan
  3. 3.Department of Maxillofacial OrthognathicsTokyo Medical and Dental University, Graduate SchoolTokyoJapan
  4. 4.Department of Oral and Maxillofacial RadiologyTokyo Medical and Dental University, Graduate SchoolTokyoJapan
  5. 5.Orthodontic Division, Department of Pedodontics and Preventive Dentistry, Faculty of DentistrySrinakharinwirot UniversityBangkokThailand

Personalised recommendations