Advertisement

Oral Radiology

, Volume 35, Issue 1, pp 11–15 | Cite as

Prediction of malignancy of submandibular gland tumors with apparent diffusion coefficient

  • Ahmed Abdel Khalek Abdel RazekEmail author
Original Article

Abstract

Objective

This study was performed to predict malignancy of submandibular gland tumors using the apparent diffusion coefficient (ADC).

Methods

In total, 31 patients (19 male, 12 female; age, 16–71 years) with solid submandibular gland tumors were retrospectively analyzed. All patients underwent single-shot echo-planar diffusion-weighted magnetic resonance imaging of the submandibular gland region. ADC maps of the submandibular gland were reconstructed. The ADC value of the submandibular gland tumors was calculated. A freehand region of interest encompassing the homogenous tumor and solid part of the heterogeneous tumor was established.

Results

The mean ADC for submandibular gland malignancy (1.15 ± 0.09 × 10−3 mm2/s) was significantly lower than that for benignancy (1.55 ± 0.25 × 10−3 mm2/s, P = 0.001). An ADC of 1.26 × 10−3 mm2/s could predict malignancy of submandibular gland tumors with an area under the curve of 0.869, accuracy of 84%, sensitivity of 88%, and specificity of 81%.

Conclusion

The ADC is a noninvasive imaging parameter that can be used for prediction of malignancy of submandibular gland tumors.

Keywords

Diffusion Magnetic resonance imaging Submandibular Tumor 

Notes

Compliance with ethical standards

Conflict of interest

Ahmed Abdel Khalek Abdel Razek declares no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human or animal subjects performed by the author.

References

  1. 1.
    Atula T, Panigrahi J, Tarkkanen J, Mäkitie A, Aro K. Preoperative evaluation and surgical planning of submandibular gland tumors. Head Neck. 2017;39:1071–7.CrossRefGoogle Scholar
  2. 2.
    Mizrachi A, Bachar G, Unger Y, Hilly O, Fliss DM, Shpitzer T. Submandibular salivary gland tumors: clinical course and outcome of a 20-year multicenter study. Ear Nose Throat J. 2017;96:E17–E20.CrossRefGoogle Scholar
  3. 3.
    Lee RJ, Tan AP, Tong EL, Satyadev N, Christensen RE. Epidemiology, prognostic factors, and treatment of malignant submandibular gland tumors: a population-based cohort analysis. JAMA Otolaryngol Head Neck Surg. 2015;141:905–12.CrossRefGoogle Scholar
  4. 4.
    Dalgic A, Karakoc O, Karahatay S, Hidir Y, Gamsizkan M, Birkent H, et al. Submandibular triangle masses. J Craniofac Surg. 2013;24:e529–e31.CrossRefGoogle Scholar
  5. 5.
    Ziglinas P, Arnold A, Arnold M, Zbären P. Primary tumors of the submandibular glands: a retrospective study based on 41 cases. Oral Oncol. 2010;46:287–91.CrossRefGoogle Scholar
  6. 6.
    Becerril-Ramírez PB, Bravo-Escobar GA, Prado-Calleros HM, Castillo-Ventura BB, Pombo-Nava A. Histology of submandibular gland tumours, 10 years’ experience. Acta Otorrinolaringol Esp. 2011;62:432–5.CrossRefGoogle Scholar
  7. 7.
    Agarwal AK, Kanekar SG. Submandibular and sublingual spaces: diagnostic imaging and evaluation. Otolaryngol Clin North Am. 2012;45:1311–23.CrossRefGoogle Scholar
  8. 8.
    Knopf A, Cortolezis N, Bas M, Mansour N, Hofauer B. Multimodal ultrasonographic algorithm in the differentiation of submandibular masses. Acta Otolaryngol. 2017;137:640–5.CrossRefGoogle Scholar
  9. 9.
    Strieth S, Siedek V, Rytvina M, Gürkov R, Berghaus A, Clevert DA. Dynamic contrast-enhanced ultrasound for differential diagnosis of submandibular gland disease. Eur Arch Otorhinolaryngol. 2014;271:163–9.CrossRefGoogle Scholar
  10. 10.
    Abdel Razek AA, Ashmalla GA, Gaballa G, Nada N. Pilot study of ultrasound parotid imaging reporting and data system [PIRADS]: inter-observer agreement. Eur J Radiol. 2015;85:2533–8.CrossRefGoogle Scholar
  11. 11.
    Kashiwagi N, Murakami T, Nakanishi K, Maenishi O, Okajima K, Takahashi H, et al. Conventional MRI findings for predicting submandibular pleomorphic adenoma. Acta Radiol. 2013;54:511–5.CrossRefGoogle Scholar
  12. 12.
    Abdel Razek AA, Samir S, Ashmalla GA. Characterization of parotid tumors with dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted MR imaging. J Comput Assist Tomogr. 2017;41:131–6.CrossRefGoogle Scholar
  13. 13.
    Lam PD, Kuribayashi A, Imaizumi A, Sakamoto J, Sumi Y, Yoshino N, et al. Differentiating benign and malignant salivary gland tumours: diagnostic criteria and the accuracy of dynamic contrast-enhanced MRI with high temporal resolution. Br J Radiol. 2015;88:20140685.CrossRefGoogle Scholar
  14. 14.
    Taylor MJ, Serpell JW, Thomson P. Preoperative fine needle cytology and imaging facilitates the management of submandibular salivary gland lesions. ANZ J Surg. 2011;81:70–4.CrossRefGoogle Scholar
  15. 15.
    Razek AA. Diffusion-weighted magnetic resonance imaging of head and neck. J Comput Assist Tomogr. 2010;34:808–15.CrossRefGoogle Scholar
  16. 16.
    Abdel Razek AA, Nada N. Role of diffusion-weighted MRI in differentiation of masticator space malignancy from infection. Dentomaxillofac Radiol. 2013;42:20120183.CrossRefGoogle Scholar
  17. 17.
    Abdel Razek A, Mossad A, Ghonim M. Role of diffusion-weighted MR imaging in assessing malignant versus benign skull-base lesions. Radiol Med. 2011;116:125–32.CrossRefGoogle Scholar
  18. 18.
    Abdel Razek AA, Kamal E. Nasopharyngeal carcinoma: correlation of apparent diffusion coefficient value with prognostic parameters. Radiol Med. 2013;118:534–9.CrossRefGoogle Scholar
  19. 19.
    Razek AA, Sieza S, Maha B. Assessment of nasal and paranasal sinus masses by diffusion-weighted MR imaging. J Neuroradiol. 2009;36:206–11.CrossRefGoogle Scholar
  20. 20.
    Terra GT, Oliveira JX, Hernandez A, Lourenço SV, Arita ES, Cortes AR. Diffusion-weighted MRI for differentiation between sialadenitis and pleomorphic adenoma. Dentomaxillofac Radiol. 2017;46:20160257.CrossRefGoogle Scholar
  21. 21.
    Assili S, Fathi Kazerooni A, Aghaghazvini L, Saligheh Rad HR, Pirayesh Islamian J. Dynamic contrast magnetic resonance imaging [DCE-MRI] and diffusion weighted MR imaging [DWI] for differentiation between benign and malignant salivary gland tumors. J Biomed Phys Eng. 2015;5:157–68.Google Scholar
  22. 22.
    Tao X, Yang G, Wang P, Wu Y, Zhu W, Shi H, et al. The value of combining conventional, diffusion-weighted and dynamic contrast-enhanced MR imaging for the diagnosis of parotid gland tumours. Dentomaxillofac Radiol. 2017;46:20160434.CrossRefGoogle Scholar
  23. 23.
    Attyé A, Troprès I, Rouchy RC, Righini C, Espinoza S, Kastler A, et al. Diffusion MRI: literature review in salivary gland tumors. Oral Dis. 2017;23:572–5.CrossRefGoogle Scholar
  24. 24.
    Eida S, Sumi M, Sakihama N, Takahashi H, Nakamura T. Apparent diffusion coefficient mapping of salivary gland tumors: prediction of the benignancy and malignancy. AJNR Am J Neuroradiol. 2007;28:116–21.Google Scholar
  25. 25.
    Habermann CR, Arndt C, Graessner J, Diestel L, Petersen KU, Reitmeier F, et al. Diffusion-weighted echo-planar MR imaging of primary parotid gland tumors: is a prediction of different histologic subtypes possible? AJNR Am J Neuroradiol. 2009;30:591–6.CrossRefGoogle Scholar

Copyright information

© Japanese Society for Oral and Maxillofacial Radiology 2017

Authors and Affiliations

  1. 1.Department of Diagnostic Radiology, Faculty of MedicineMansoura UniversityMansouraEgypt

Personalised recommendations