Gaussian mixture embedding of multiple node roles in networks
- 16 Downloads
Abstract
Network embedding is a classical topic in network analysis. Current network embedding methods mostly focus on deterministic embedding, which maps each node as a low-dimensional vector. Thus, the network uncertainty and the possible multiple roles of nodes cannot be well expressed. In this paper, we propose to embed a single node as a mixture of Gaussian distribution in a low-dimensional space. Each Gaussian component corresponds to a latent role that the node plays. The proposed approach thus can characterize network nodes in a comprehensive representation, especially bridging nodes, which are relevant to different communities. Experiments on real-world network benchmarks demonstrate the effectiveness of our approach, outperforming the state-of-the-art network embedding methods. Also, we demonstrate that the number of components learned for each node is highly related to its topology features, such as node degree, centrality and clustering coefficient.
Keywords
Network embedding Gaussian mixture distribution Energy based learning Graph miningNotes
Acknowledgments
This work was partially supported and funded by King Abdullah University of Science and Technology (KAUST), under award number FCC/1/1976-19-01, and NSFC No 61828302, the National Key Research and Development Program of China (2017YFB1002000), Science Technology and Innovation Commission of Shenzhen Municipality (JCYJ20180307123659504), and the State Key Laboratory of Software Development Environment in Beihang University.
References
- 1.Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: WWW, pp 37–48. ACM (2013)Google Scholar
- 2.Akujuobi, U., Yufei, H., Zhang, Q., Zhang, X.: Collaborative graph walk for semi-supervised multi-label node classification. In: ICDM (2019)Google Scholar
- 3.Athiwaratkun, B., Wilson, A.G.: Multimodal word distributions. In: Conference of the Association for Computational Linguistics (ACL) (2017)Google Scholar
- 4.Balafar, M.: Gaussian mixture model based segmentation methods for brain mri images. Artif. Intell. Rev. 41(3), 429–439 (2014)CrossRefGoogle Scholar
- 5.Belkin, M., Niyogi, P: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, pp 585–591 (2002)Google Scholar
- 6.Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE TPAMI 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
- 7.Bojchevski, A., Günnemann, S.: Deep Gaussian embedding of attributed graphs: Unsupervised inductive learning via ranking ICLR (2018)Google Scholar
- 8.Boureau, Y.-l., Cun, Y.L., et al.: Sparse feature learning for deep belief networks. In: NIPS, pp 1185–1192 (2008)Google Scholar
- 9.Bouveyron, C., Brunet-Saumard, C.: Model-based clustering of high-dimensional data: A review. Comput. Stat. Data Anal. 71, 52–78 (2014)MathSciNetCrossRefGoogle Scholar
- 10.Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Lackner, D.H., Bähler, J., Wood, V., et al.: The biogrid interaction database. Nucleic Acids Res. 36(suppl_1), D637–D640 (2008)Google Scholar
- 11.Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: Problems, techniques and applications TKDE (2018)Google Scholar
- 12.Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI, pp 1145–1152 (2016)Google Scholar
- 13.Chen, X., Qiu, X., Jiang, J., Huang, X.: Gaussian mixture embeddings for multiple word prototypes. arXiv:1511.06246 (2015)
- 14.Chen, X., Yu, G., Wang, J., Domeniconi, C., Li, Z., Zhang, X.: ActiveHNE: Active heterogeneous network embedding. In: IJCAI (2019)Google Scholar
- 15.Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Transactions on Knowledge and Data Engineering (2018)Google Scholar
- 16.Dos Santos, L., Piwowarski, B., Gallinari, P.: Multilabel classification on heterogeneous graphs with gaussian embeddings. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp 606–622. Springer (2016)Google Scholar
- 17.Durrieu, J.-L., Thiran, J.-P., Kelly, F.: Lower and upper bounds for approximation of the kullback-leibler divergence between gaussian mixture models. In: ICASSP, pp 4833–4836 (2012)Google Scholar
- 18.Epasto, A., Perozzi, B.: Is a single embedding enough? Learning node representations that capture multiple social contexts in the Web conference (2019)Google Scholar
- 19.Gao, X., Carroll, R.J.: Data integration with high dimensionality. Biometrika 104(2), 251–272 (2017)MathSciNetCrossRefGoogle Scholar
- 20.Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: SIGKDD, pp 855–864. ACM (2016)Google Scholar
- 21.Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR, vol. 2, pp 1735–1742. IEEE (2006)Google Scholar
- 22.Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)Google Scholar
- 23.Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods and applications. arXiv:1709.05584 (2017)
- 24.He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with gaussian embedding. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp 623–632. ACM (2015)Google Scholar
- 25.Hershey, J.R., Olsen, P.A.: Approximating the Kullback Leibler divergence between gaussian mixture models. ICASSP 4, IV–317–IV–320 (2007)Google Scholar
- 26.Higuchi, T., Ito, N., Araki, S., Yoshioka, T., Delcroix, M., Nakatani, T.: Online mvdr beamformer based on complex gaussian mixture model with spatial prior for noise robust asr. IEEE/ACM Trans. Audio Speech Language Process. 25(4), 780–793 (2017)CrossRefGoogle Scholar
- 27.Jebara, T., Kondor, R.: Bhattacharyya and expected likelihood kernels. In: Learning Theory and Kernel Machines, pp 57–71. Springer (2003)Google Scholar
- 28.Jebara, T., Kondor, R.I., Howard, A.: Probability product kernels. JMLR 5, 819–844 (2004)MathSciNetzbMATHGoogle Scholar
- 29.Jiang, J., Yang, D., Xiao, Y., Shen, C.: Convolutional Gaussian embeddings for personalized recommendation with uncertainty. In: IJCAI (2019)Google Scholar
- 30.Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing, vol. 37. Addison-Wesley, Reading (1993)zbMATHGoogle Scholar
- 31.Li, L., Zheng, K., Wang, S., Zhou, X.: Go slow to go fast: Minimal On-road time route scheduling with parking facilities using historical trajectory. VLDB J. 27 (3), 321–345 (2018)CrossRefGoogle Scholar
- 32.Lian, D., Zheng, K., Ge, Y., Cao, L., Chen, E., Xie, X.: GeoMF++: Scalable location recommendation via joint geographical modeling and matrix factorization. ACM Trans. Inf. Syst. 36(3), 33:1–33:29 (2018)CrossRefGoogle Scholar
- 33.LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predict. Struct. Data 1, 0 (2006)Google Scholar
- 34.Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned from word embeddings. Trans. Assoc. Comput. Linguist. 3, 211–225 (2015)CrossRefGoogle Scholar
- 35.Liang, S., Zhang, X., Ren, Z., Kanoulas, E.: Dynamic embeddings for user profiling in Twitter. In: KDD (2018)Google Scholar
- 36.Liu, G., Zheng, K., Liu, A., Li, Z., Wang, Y., Zhou, X.: MCS-GPM: Multi-constrained simulation based graph pattern matching in contextual social graphs. TKDE 30(6), 1050–1064 (2018)Google Scholar
- 37.Liu, X., Murata, T., Kim, K., Kotarasu, C, Zhuang, C: A general view for network embedding as matrix factorization in WSDM (2019)Google Scholar
- 38.Ma, Y., Ren, Z., Jiang, Z., Tang, J., Yin, D.: Multi-dimensional network embedding with hierarchical structure WSDM (2018)Google Scholar
- 39.Mahoney, M.: Large text compression benchmark, http://www.mattmahoney.net/text/text.html (2011)
- 40.Meng, Z., Liang, S., Bao, H., Zhang, X.: Co-embedding attributed networks. In: WSDM (2019)Google Scholar
- 41.Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: AAAI, pp 2786–2792 (2016)Google Scholar
- 42.Neculoiu, P., Versteegh, M., Rotaru, M.: Learning text similarity with siamese recurrent networks. In: Proceedings of the 1st Workshop on Representation Learning for NLP, pp 148–157 (2016)Google Scholar
- 43.Paulik, M: Lattice-based training of bottleneck feature extraction neural networks. In: Interspeech, pp 89–93 (2013)Google Scholar
- 44.Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: SIGKDD, pp 701–710. ACM (2014)Google Scholar
- 45.Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip!: Online learning of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp 258–265. ACM (2017)Google Scholar
- 46.Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization unifying DeepWalk, LINE, PTE, and node2vec. In: WSDM (2018)Google Scholar
- 47.Qu, M., Tang, J., Shang, J., Ren, X., Zhang, M., Han, J.: An attention-based collaboration framework for multi-view network representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp 1767–1776. ACM (2017)Google Scholar
- 48.Reynolds, D.: Gaussian mixture models. Encycloped. Biom., 827–832 (2015)Google Scholar
- 49.Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: Learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 385–394. ACM (2017)Google Scholar
- 50.Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
- 51.Sun, G., Zhang, X.: A novel framework for node/edge attributed graph embedding. In: PAKDD (2019)CrossRefGoogle Scholar
- 52.Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min. Knowl. Disc. 23(3), 447–478 (2011)MathSciNetCrossRefGoogle Scholar
- 53.Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: Large-scale information network embedding. WWW, pp. 1067–1077. [Online]. Available: 1503.03578 (2015)
- 54.Tang, J., Qu, M., Mei, Q.: Identity-sensitive word embedding through heterogeneous networks. arXiv:1611.09878 (2016)
- 55.Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: CVPR, pp 1420–1429. IEEE (2016)Google Scholar
- 56.Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versatile graph embeddings from similarity measures. In: Proceedings of the 2018 World Wide Web Conference, ser WWW, pp 539–548 (2018)Google Scholar
- 57.Vilnis, L., Mccallum, A.: Word representations via gaussian embedding. In: ICLR, pp 1–12 (2015)Google Scholar
- 58.Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. IJCAI 2015-Janua, 2111–2117 (2015)Google Scholar
- 59.Yang, Z., Cohen, W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. ICML, vol. 48. [Online]. Available: 1603.08861(2016)
- 60.Yang, X., Huang, K., Goulermas, J.Y., Zhang, R.: Joint learning of unsupervised dimensionality reduction and gaussian mixture model. Neural. Process. Lett. 45, 791–806 (2017)CrossRefGoogle Scholar
- 61.Yang, R., Shi, J., Xiao, X., Bhowmick, S.S., Yang, Y.J.: Homogeneous network embedding for massive graphs via personalized pagerank. ArXiv (2019)Google Scholar
- 62.Zhang, M.-L., Zhou, Z.-H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefGoogle Scholar
- 63.Zhang, C., Woodland, P.: Joint optimisation of tandem systems using gaussian mixture density neural network discriminative sequence training. In: ICASSP, pp 5015–5019. IEEE (2017)Google Scholar
- 64.Zhang, D., Yin, J., Zhu, X., Zhang, C.: User profile preserving social network embedding. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp 3378–3384. AAAI Press (2017)Google Scholar
- 65.Zhang, J., Dong, Y., Wang, Y., Tang, J., Ding, M.: ProNE: Fast and scalable network representation learning in IJCAI (2019)Google Scholar
- 66.Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2014)CrossRefGoogle Scholar
- 67.Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route search on road networks. TKDE 29(9), 1846–1859 (2017)Google Scholar
- 68.Zheng, K., Zhao, Y., Lian, D., Zheng, B., Liu, G., Zhou, X.: Reference-based framework for spatio-temporal trajectory compression and query processing in TKDE (2019)Google Scholar
- 69.Zhou, X.: Destination-aware task assignment in spatial crowdsourcing: A worker decomposition approach. In: IEEE Trans. Knowl. Data Eng., https://doi.org/10.1109/TKDE.2019.2922604 (2019)
- 70.Zhu, D., Cui, P., Wang, D., Zhu, W: Deep variational network embedding in Wasserstein space. In: KDD (2018)Google Scholar