Advertisement

Trajectories know where map is wrong: an iterative framework for map-trajectory co-optimisation

  • Pingfu ChaoEmail author
  • Wen Hua
  • Xiaofang Zhou
Article
  • 23 Downloads

Abstract

The low map quality has been a persistent problem which is usually caused by the belated map update. Although the recent research on map inference/update enables timely map update through the use of trajectory data, the update quality is still far from being practically useful due to the trajectory inaccuracy. In this work, we propose an iterative map-trajectory co-optimisation framework which refines the traditional map inference/update results by considering their contribution to the quality improvement on both map and trajectory map-matching results. In each iteration, we propose two respective scores to measure the credibility and influence of each road update and refine the map and map-matching result accordingly. Meanwhile, we quantify the quality of map and trajectory-matching results so that the goal of our iterative co-optimisation is to maximise the overall quality result. Additionally, to accelerate the iterative process, we introduce an R-tree-based spatial index to avoid unnecessary map-matching. Overall, our framework supports most of the existing map inference/update methods and significantly improves the quality of their update result with affordable overhead. We conduct extensive experiments on real-world datasets of different scales. The results show the significant quality improvement over the state-of-the-art map update methods while the efficiency stays competitive.

Keywords

Map update Map-matching Map-trajectory co-optimisation 

Notes

References

  1. 1.
    Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica 19(3), 601–632 (2015)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ahmed, M., Karagiorgou, S., Pfoser, D., Wenk, C.: Map construction algorithms. In: Map Construction Algorithms, pp. 1–14. Springer (2015)Google Scholar
  3. 3.
    Ahmed, M., Wenk, C.: Constructing street networks from Gps trajectories. In: European Symposium on Algorithms, pp. 60–71. Springer (2012)Google Scholar
  4. 4.
    Biagioni, J., Eriksson, J.: Inferring road maps from global positioning system traces: Survey and comparative evaluation. Transportation Research Record:, Journal of the Transportation Research Board (2291), 61–71 (2012)Google Scholar
  5. 5.
    Biagioni, J., Eriksson, J.: Map inference in the face of noise and disparity. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 79–88. ACM (2012)Google Scholar
  6. 6.
    Cao, L., Krumm, J.: From gps traces to a routable road map. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 3–12. ACM (2009)Google Scholar
  7. 7.
    Chao, P., Hua, W., Zhou, X.: An iterative map-trajectory co-optimisation framework based on map-matching and map update. In: International Conference on Database Systems for Advanced Applications. Springer (2019)Google Scholar
  8. 8.
    Davies, J.J., Beresford, A.R., Hopper, A.: Scalable, distributed, real-time map generation. IEEE Pervasive Comput. 5(4), 47–54 (2006)CrossRefGoogle Scholar
  9. 9.
    Ding, Z., Yang, B., Chi, Y., Guo, L.: Enabling smart transportation systems: a parallel spatio-temporal database approach. IEEE Trans. Comput. 65(5), 1377–1391 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Edelkamp, S., Schrödl, S.: Route planning and map inference with global positioning traces. In: Computer Science in Perspective, pp. 128–151. Springer (2003)Google Scholar
  11. 11.
    Ezzat, M., Sakr, M., Elgohary, R., Khalifa, M.E.: Building road segments and detecting turns from gps tracks. Journal of computational science 29, 81–93 (2018)CrossRefGoogle Scholar
  12. 12.
    Hashemi, M., Karimi, H.A.: A critical review of real-time map-matching algorithms: Current issues and future directions. Comput. Environ. Urban. Syst. 48, 153–165 (2014)CrossRefGoogle Scholar
  13. 13.
    Hopper, D.: 7 times google maps straight up ruined people’s lives. http://www.cracked.com/article_25510_7-times-google-maps-straight-up-ruined-peoples-lives.html (2018)
  14. 14.
    Hu, G., Shao, J., Liu, F., Wang, Y., Shen, H.T.: If-matching: Towards accurate map-matching with information fusion. IEEE Trans. Knowl. Data Eng. 29(1), 114–127 (2017)CrossRefGoogle Scholar
  15. 15.
    Jeung, H., Lu, H., Sathe, S., Yiu, M.L.: Managing evolving uncertainty in trajectory databases. IEEE Trans. Knowl. Data Eng. 26(7), 1692–1705 (2013)CrossRefGoogle Scholar
  16. 16.
    Karagiorgou, S., Pfoser, D.: On vehicle tracking data-based road network generation. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 89–98. ACM (2012)Google Scholar
  17. 17.
    Karagiorgou, S., Pfoser, D., Skoutas, D.: A layered approach for more robust generation of road network maps from vehicle tracking data. ACM Transactions on Spatial Algorithms and Systems (TSAS) 3(1), 3 (2017)Google Scholar
  18. 18.
    Kubička, M., Cela, A., Moulin, P., Mounier, H., Niculescu, S.I.: Dataset for testing and training of map-matching algorithms. In: Intelligent Vehicles Symposium (IV), 2015 IEEE, pp. 1088–1093. IEEE (2015)Google Scholar
  19. 19.
    Kubicka, M., Cela, A., Mounier, H., Niculescu, S.I.: Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intell. Transp. Syst. Mag. 10(2), 150–166 (2018)CrossRefGoogle Scholar
  20. 20.
    Leutenegger, S.T., Lopez, M.A., Edgington, J.: Str: a simple and efficient algorithm for R-Tree packing. In: Proceedings. 13Th International Conference on Data Engineering, 1997, pp. 497–506. IEEE (1997)Google Scholar
  21. 21.
    Li, H., Kulik, L., Ramamohanarao, K.: Automatic generation and validation of road maps from gps trajectory data sets. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1523–1532. ACM (2016)Google Scholar
  22. 22.
    Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., Zhu, Y.: Mining large-scale, sparse gps traces for map inference: comparison of approaches. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 669–677. ACM (2012)Google Scholar
  23. 23.
    Ma, C., Lu, H., Shou, L., Chen, G.: Ksq: Top-k similarity query on uncertain trajectories. IEEE Trans. Knowl. Data Eng. 25(9), 2049–2062 (2012)Google Scholar
  24. 24.
    Mohamed, R., Aly, H., Youssef, M.: Accurate and efficient map matching for challenging environments. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 401–404. ACM (2014)Google Scholar
  25. 25.
    Newson, P., Krumm, J.: Hidden markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 336–343. ACM (2009)Google Scholar
  26. 26.
    Peixoto, D.A., Hung, N.Q.V.: Scalable and fast Top-K most similar trajectories search using mapreduce In-Memory. In: Australasian Database Conference, pp. 228–241. Springer (2016)Google Scholar
  27. 27.
    Qiu, J., Wang, R.: Inferring road maps from sparsely sampled gps traces. Journal of Location Based Services 10(2), 111–124 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part c:, Emerging Technologies 15(5), 312–328 (2007)CrossRefGoogle Scholar
  29. 29.
    Shan, Z., Wu, H., Sun, W., Zheng, B.: Cobweb: a robust map update system using gps trajectories. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 927–937. ACM (2015)Google Scholar
  30. 30.
    Stanojevic, R., Abbar, S., Thirumuruganathan, S., Morales, G.D.F., Chawla, S., Filali, F., Aleimat, A.: Road network fusion for incremental map updates. In: LBS 2018: 14Th International Conference on Location Based Services, pp. 91–109. Springer (2018)Google Scholar
  31. 31.
    Wang, T., Mao, J., Jin, C.: Hymu: a hybrid map updating framework. In: International Conference on Database Systems for Advanced Applications, pp. 19–33. Springer (2017)Google Scholar
  32. 32.
    Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., Zhu, Y.: Crowdatlas: self-updating maps for cloud and personal use. In: Proceeding of the 11Th Annual International Conference on Mobile Systems, Applications, and Services, pp. 27–40. ACM (2013)Google Scholar
  33. 33.
    Wei, H., Wang, Y., Forman, G., Zhu, Y.: Map matching: Comparison of approaches using sparse and noisy data. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 444–447. ACM (2013)Google Scholar
  34. 34.
    Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast viterbi map matching with tunable weight functions. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 613–616. ACM (2012)Google Scholar
  35. 35.
    Wu, H., Tu, C., Sun, W., Zheng, B., Su, H., Wang, W.: Glue: a parameter-tuning-free map updating system. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 683–692. ACM (2015)Google Scholar
  36. 36.
    Yang, B., Fantini, N., Jensen, C.S.: ipark: Identifying parking spaces from trajectories. In: Proceedings of the 16th International Conference on Extending Database Technology, pp. 705–708. ACM (2013)Google Scholar
  37. 37.
    Yang, B., Ma, Q., Qian, W., Zhou, A.: Truster: trajectory data processing on clusters. In: International Conference on Database Systems for Advanced Applications, pp. 768–771. Springer (2009)Google Scholar
  38. 38.
    Yang, C., Gidofalvi, G.: Fast map matching, an algorithm integrating hidden markov model with precomputation. Int. J. Geogr. Inf. Sci. 32(3), 547–570 (2018)CrossRefGoogle Scholar
  39. 39.
    Zhu, Y., Wang, Y., Forman, G., Wei, H.: Mining large-scale gps streams for connectivity refinement of road maps. Comput. J. 58(9), 2109–2119 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Technology and Electrical EngineeringUniversity of QueenslandBrisbaneAustralia

Personalised recommendations