Advertisement

Intelligent maintenance frameworks of large-scale grid using genetic algorithm and K-Mediods clustering methods

  • Weifeng Wang
  • Bing Lou
  • Xiong Li
  • Xizhong Lou
  • Ning Jin
  • Ke YanEmail author
Article
  • 12 Downloads
Part of the following topical collections:
  1. Special Issue on Smart Computing and Cyber Technology for Cyberization

Abstract

Large-scale power grids, especially smart grid systems, consist of a huge amount of complex computerized electronic devices, such as smart meters. A smart maintenance system is desired to schedule and send maintenance worker to locations where any computerized devices become faulty. A grid management system (GMS) is purposely designed in the way that the following three conditions are generally fulfilled: 1) all workers are working on full capacity everyday; 2) the highest severity level faulty devices are fixed the quickest; and 3) the overall traveling distance/time is minimized. In this study, two intelligent grid maintenance framework are proposed considering the above three conditioned based on two state-of-arts algorithms, namely, genetic algorithm and K-mediods clustering method, respectively. Five real-world datasets collected from five different local cities/counties in eastern China are adopted and applied to verify the effectiveness of the two proposed intelligent grid maintenance frameworks.

Keywords

Smart electric power grid Maintenance planning Genetic algorithm K-mediods clustering 

Notes

Acknowledgements

This study is supported by National Natural Science Foundation of China (No. 61850410531). It is also partially supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY19F020016 and National Natural Science Foundation of China (No. 61602431). A previous version of this paper titled ‘Data-Driven Intelligent Maintenance Planning of Smart Meter Reparations for Large-Scale Smart Electric Power Grid’ was published with The 4th IEEE International Conference on Internet of People (IoP 2018) on October 8-12, 2018, at Guangzhou in China.

Compliance with Ethical Standards

Conflict of interests

All authors declare that there is no conflict of interest regarding the publication of this manuscript.

References

  1. 1.
    Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K.: Efficient machine learning for big data: a review. Big Data Research 2(3), 87–93 (2015)CrossRefGoogle Scholar
  2. 2.
    Berge, C., Minieka, E.: Graphs and hypergraphs (1973)Google Scholar
  3. 3.
    Bhanu, B., Lee, S., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Trans. Syst. Man Cybern. 25(12), 1543–1567 (1995)CrossRefGoogle Scholar
  4. 4.
    Bishnu, P.S., Bhattacherjee, V.: Application of k-medoids with kd-tree for software fault prediction. ACM SIGSOFT Software Engineering Notes 36(2), 1–6 (2011)CrossRefGoogle Scholar
  5. 5.
    Bui, N., Castellani, A.P., Casari, P., Zorzi, M.: The internet of energy: a Web-enabled smart grid system. IEEE Netw. 26(4), 39–45 (2012)CrossRefGoogle Scholar
  6. 6.
    Cai, B., Huang, L., Xie, M.: Bayesian networks in fault diagnosis. IEEE Trans. Ind. Inf. 13(5), 2227–2240 (2017)CrossRefGoogle Scholar
  7. 7.
    Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE access 2, 514–525 (2014)CrossRefGoogle Scholar
  8. 8.
    Colak, I.: Introduction to smart grid. In: Smart Grid Workshop and Certificate Program (ISGWCP). International, pp. 1–5, IEEE (2016)Google Scholar
  9. 9.
    Desai, B., Lebow, M.: Needed: asap approach, intelligent fleet management for transformers: a risk-based approach. IEEE Power Energ. Mag. 8(6), 53–60 (2010)CrossRefGoogle Scholar
  10. 10.
    Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)CrossRefGoogle Scholar
  11. 11.
    Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM sIGKDD Explorations Newsletter 14(2), 1–5 (2013)CrossRefGoogle Scholar
  12. 12.
    Fei, S.w., Zhang, X.b.: Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Systems with Applications 36(8), 11:352–11:357 (2009)CrossRefGoogle Scholar
  13. 13.
    Feng, J.X., Kusiak, A.: Data mining applications in engineering design, manufacturing and logistics. Int. J. Prod. Res. 44(14), 2689–2694 (2006)CrossRefGoogle Scholar
  14. 14.
    Germán, M O, Molina, J.D., Romero, A.A., Gómez, H.D., García, E.: Power asset management: methods and experiences in colombian power system. In: Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), 2014 IEEE PES, pp. 1–6, IEEE (2014)Google Scholar
  15. 15.
    Ijjina, E.P., Chalavadi, K.M.: Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognit. 59, 199–212 (2016)CrossRefGoogle Scholar
  16. 16.
    Isermann, R.: Fault-diagnosis applications: model-based condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems. Springer Science & Business Media (2011)Google Scholar
  17. 17.
    Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20 (7), 1483–1510 (2006)CrossRefGoogle Scholar
  18. 18.
    Jiang, H., Zhang, J.J., Gao, W., Wu, Z.: Fault detection, identification, and location in smart grid based on data-driven computational methods. IEEE Trans. Smart Grid 5(6), 2947–2956 (2014)CrossRefGoogle Scholar
  19. 19.
    Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Juntunen, T., Kostakos, V., Perttunen, M., Ferreira, D.: Web tool for traffic engineers: direct manipulation and visualization of vehicular traffic using google maps. In: Proceeding of the International Academic Mindtrek Conference, pp 209–210 (2012)Google Scholar
  21. 21.
    Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. North-Holland (1987)Google Scholar
  22. 22.
    Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., Liao, H.: Intelligent prognostics tools and e-maintenance. Comput. Ind. 57(6), 476–489 (2006)CrossRefGoogle Scholar
  23. 23.
    Lei, R., Xue, L., Le, X., Liu, W.: Coordinated energy cost management of distributed internet data centers in smart grid. IEEE Trans. Smart Grid 3(1), 50–58 (2012)Google Scholar
  24. 24.
    Lei, Y., He, Z., Zi, Y., Chen, X.: New clustering algorithm-based fault diagnosis using compensation distance evaluation technique. Mech. Syst. Signal Process. 22(2), 419–435 (2008)CrossRefGoogle Scholar
  25. 25.
    Lu, H., Chen, J., Yan, K., Jin, Q., Xue, Y., Gao, Z.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017)CrossRefGoogle Scholar
  26. 26.
    Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Comput. 17(6-7), 619–632 (1991)CrossRefzbMATHGoogle Scholar
  27. 27.
    Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. Journal of Big Data 2(1), 1 (2015)CrossRefGoogle Scholar
  28. 28.
    Nelson, V.P.: Fault-tolerant computing: Fundamental concepts. Computer 23 (7), 19–25 (1990)CrossRefGoogle Scholar
  29. 29.
    Qin, S.J.: Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control. 36(2), 220–234 (2012)CrossRefGoogle Scholar
  30. 30.
    Rai, A., Upadhyay, S.: Bearing performance degradation assessment based on a combination of empirical mode decomposition and k-medoids clustering. Mech. Syst. Signal Process. 93, 16–29 (2017)CrossRefGoogle Scholar
  31. 31.
    Siewiorek, D.P., Swarz, R.S.: The theory and practice of reliable system design. Digital press (1982)Google Scholar
  32. 32.
    Singh, S.S., Chauhan, N.: K-means v/s k-medoids: A comparative study. In: National Conference on Recent Trends in Engineering & Technology, vol. 13 (2011)Google Scholar
  33. 33.
    Skiena, S.: Dijkstra algorithm. Implementing Discrete mathematics: Combinatorics and Graph Theory with Mathematica, pp 225–227. Addison-Wesley, Reading (1990)Google Scholar
  34. 34.
    Spears, W.M.: Crossover or mutation? In: Foundations of Genetic Algorithms, vol 2. pp 221–237, Elsevier (1993)Google Scholar
  35. 35.
    Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)CrossRefGoogle Scholar
  36. 36.
    Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)Google Scholar
  37. 37.
    Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K.: A review of process fault detection and diagnosis: Part iii: Process history based methods. Comput. Chem. Eng. 27(3), 327–346 (2003)CrossRefGoogle Scholar
  38. 38.
    Viswanadham, N., Johnson, T.: Fault detection and diagnosis of automated manufacturing systems. In: Proceedings of the 27th IEEE Conference on Decision and Control, 1988, pp. 2301–2306. IEEE (1988)Google Scholar
  39. 39.
    Wang, W., Chen, H., Lou, B., Jin, N., Lou, X., Yan, K.: Data-driven intelligent maintenance planning of smart meter reparations for large-scale smart electric power grid. In: 2018 IEEE Smartworld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1929–1935. IEEE (2018)Google Scholar
  40. 40.
    Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)CrossRefGoogle Scholar
  41. 41.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2016)Google Scholar
  42. 42.
    Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRefGoogle Scholar
  43. 43.
    Wu, Y.J., Wang, Y., Qian, D.: A google-map-based arterial traffic information system. In: Intelligent Transportation Systems Conference, 2007. ITSC 2007, pp. 968?-973. IEEE (2007)Google Scholar
  44. 44.
    Yan, K., Ji, Z., Lu, H., Huang, J., Shen, W., Xue, Y.: Fast and accurate classification of time series data using extended elm: Application in fault diagnosis of air handling units. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2017)Google Scholar
  45. 45.
    Yan, K., Zhong, C., Ji, Z., Huang, J.: Semi-supervised learning for early detection and diagnosis of various air handling unit faults. Energ. Buildings 181, 75–83 (2018)CrossRefGoogle Scholar
  46. 46.
    Yang, J., Wu, C., Lee, H.P., Liang, Y.: Solving traveling salesman problems using generalized chromosome genetic algorithm. Prog. Nat. Sci. 18(7), 887–892 (2008)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zhong, C., Yan, K., Dai, Y., Jin, N., Lou, B.: Energy efficiency solutions for buildings: Automated fault diagnosis of air handling units using generative adversarial networks. Energies 12(3), 527 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Grid Zhejiang Electric Power Co., LtdHangzhouChina
  2. 2.Zhejiang Huayun Information Technology Co., LtdHangzhouChina
  3. 3.College of Information EngineeringChina Jiliang UniversityHangzhouChina

Personalised recommendations