A novel hybrid publication recommendation system using compound information

  • Qiang Yang
  • Zhixu LiEmail author
  • An Liu
  • Guanfeng Liu
  • Lei Zhao
  • Xiangliang Zhang
  • Min Zhang
  • Xiaofang Zhou
Part of the following topical collections:
  1. Special Issue on Web and Big Data


Publication recommendation is an interesting but challenging research problem. Most existing studies only use partial information of papers’ contents, reference network or co-author relationship, which leads to an unsatisfied recommendation result. In this study, we propose a novel hybrid publication recommendation approach using compound information which retrieves top-K most relevant papers from a publication depository for a set of user input keywords. Our advantages comparing to the existing methods include: (1) Reaching a better recommendation results by taking the advantages of both content-based recommendation and citation-based recommendation and exploring much richer information of papers in one method; (2) Effectively solving the cold-start problem for new published papers by considering the vitality of papers and the impact factor of venues into the citation network; (3) Saving a large overhead in calculating the content-based similarity between papers and user input keywords by doing paper clustering based on the citation network. Extensive experiments on DBLP and Microsoft Academic datasets demonstrate that PubTeller improves the state-of-the-art methods with 4% in Precision and 4.5% in Recall.


Publication recommendation Compound information Edge-reinforced citation network Citation network cluster 



This research is partially supported by National Natural Science Foundation of China (No. 61632016, 61572336, 61572335, 61772356), the Natural Science Research Project of Jiangsu Higher Education Institution (No. 17KJA520003, 18KJA520010), the Open Program of Neusoft Corporation (No. SKLSAOP1801), and King Abdullah University of Science and Technology (KAUST) under award number FCC/1/1976-19-01.


  1. 1.
    Amami, M., Pasi, G., Stella, F., Faiz, R.: An Lda-Based approach to scientific paper recommendation. In: International Conference on Applications of Natural Language to Information Systems, pp. 200–210. Springer (2016)Google Scholar
  2. 2.
    Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., Nürnberger, A.: Research paper recommender system evaluation: a quantitative literature survey. In: Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, pp. 15–22. ACM (2013)Google Scholar
  3. 3.
    Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides of the same coin? Commun. ACM 35(12), 29–38 (1992)CrossRefGoogle Scholar
  4. 4.
    Cazella, S.C., Alvares, L.O.C.: An architecture based on multi-agent system and data mining for recommending research papers and researchers. In: Eighteenth International Conference on Software Engineering & Knowledge Engineering, pp. 67–72 (2006)Google Scholar
  5. 5.
    Chen, J., Tang, Y., Li, J., Mao, C., Xiao, J.: Community-based scholar recommendation modeling in academic social network sites. In: International Conference on Web Information Systems Engineering, pp. 325–334. Springer (2013)Google Scholar
  6. 6.
    Ekstrand, M.D., Kannan, P., Stemper, J.A., Butler, J.T., Konstan, J.A., Riedl, J.T.: Automatically building research reading lists. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 159–166. ACM (2010)Google Scholar
  7. 7.
    Gori, M., systems, A. Pucci.: Research paper recommender a random-walk based approach. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI’06), pp 778–781. IEEE (2006)Google Scholar
  8. 8.
    He, Q., Pei, J., Kifer, D., Mitra, P., Giles, L.: Context-aware citation recommendation. In: Proceedings of the 19th international conference on World wide Web, pp. 421–430. ACM (2010)Google Scholar
  9. 9.
    Huang, W., Wu, Z., Chen, L., Mitra, P., Giles, C.L.: A neural probabilistic model for context based citation recommendation. In: AAAI, pp. 2404–2410 (2015)Google Scholar
  10. 10.
    Huang, Z., Qiu, Y.: A multiple-perspective approach to constructing and aggregating citation semantic link network. Futur. Gener. Comput. Syst. 26(3), 400–407 (2010)CrossRefGoogle Scholar
  11. 11.
    Huang, Z., Zeng, D., Chen, H.: A comparison of collaborative-filtering recommendation algorithms for e-commerce. Intelligent Systems IEEE 22(5), 68–78 (2007)CrossRefGoogle Scholar
  12. 12.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, U.̈ V.: Direction awareness in citation recommendation. Wien. Med. Wochenschr. 123(9), 148–149 (2012)Google Scholar
  13. 13.
    Küçüktunç, O., Saule, E., Kaya, K., Çatalyürek, U.̈V.: Recommendation on academic networks using direction aware citation analysis. arXiv:1205.1143 (2012)
  14. 14.
    Lang, K.: Newsweeder: Learning to filter news (1995)Google Scholar
  15. 15.
    Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, J., Lee, K., Kim, J.G.: Personalized academic research paper recommendation system. Computer Science (2013)Google Scholar
  17. 17.
    Li, J., Willett, P.: Articlerank: a pagerank-based alternative to numbers of citations for analysing citation networks. In: Aslib Proceedings, vol. 61, pp. 605–618. Emerald Group Publishing Limited (2009)Google Scholar
  18. 18.
    Li, J., Xia, F., Wang, W., Chen, Z., Asabere, N.Y., Jiang, H.: Acrec: a co-authorship based random walk model for academic collaboration recommendation. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 1209–1214. ACM (2014)Google Scholar
  19. 19.
    Liang, Y., Li, Q., Qian, T.: Finding relevant papers based on citation relations. In: International Conference on Web-Age Information Management, pp. 403–414. Springer (2011)Google Scholar
  20. 20.
    Linden, G., Smith, B., York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  21. 21.
    Lopes, G.R., Moro, M.M., Wives, L.K., De Oliveira, J.P.M.: Collaboration recommendation on academic social networks. In: International Conference on Conceptual Modeling, pp. 190–199. Springer (2010)Google Scholar
  22. 22.
    Lu, M., Wei, X., Gao, J., Shi, Y.: Ahits-upt: A high quality academic resources recommendation method. In: IEEE International Conference on Smart City/Socialcom/Sustaincom, pp. 507–512 (2015)Google Scholar
  23. 23.
    Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Forth International Conference on Web Search and Web Data Mining, WSDM 2011, pp. 287–296. Hong Kong (2011)Google Scholar
  24. 24.
    Ma, K., Lu, T., Abraham, A.: Hybrid Parallel Approach for Personalized Literature Recommendation System. In: International Conference on Computational Aspects of Social Networks, pp. 31–36 (2014)Google Scholar
  25. 25.
    Ma, N., Guan, J., Zhao, Y.: Bringing pagerank to the citation analysis. Inf. Process. Manag. 44(2), 800–810 (2008)CrossRefGoogle Scholar
  26. 26.
    Massa, P., Avesani, P.: Trust-Aware Collaborative Filtering for Recommender Systems. Springer, Berlin (2004)CrossRefGoogle Scholar
  27. 27.
    Mcnee, S.M., Albert, I., Dan, C., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J.A., Riedl, J.: On the recommending of citations for research papers. In: Cscw02, P, pp. 116–125 (2003)Google Scholar
  28. 28.
    Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and citations. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 542–550. ACM (2008)Google Scholar
  29. 29.
    Newman, M.E.: Scientific collaboration networks. i. network construction and fundamental results. Phys. Rev. E 64(64), 016131 (2001)CrossRefGoogle Scholar
  30. 30.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the Web (1999)Google Scholar
  31. 31.
    Ren, X., Liu, J., Yu, X., Khandelwal, U., Gu, Q., Wang, L., Han, J.: Cluscite: Effective citation recommendation by information network-based clustering. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 821–830. ACM (2014)Google Scholar
  32. 32.
    Salton, G.: Associative document retrieval techniques using bibliographic information. J. ACM (JACM) 10(4), 440–457 (1963)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sun, L., Franklin, M.J., Krishnan, S., Xin, R.S.: Fine-grained partitioning for aggressive data skipping. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 1115–1126. ACM (2014)Google Scholar
  34. 34.
    Tang, J., Zhang, J.: A Discriminative Approach to Topic-Based Citation Recommendation. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp 572–579. Springer (2009)Google Scholar
  35. 35.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008)Google Scholar
  36. 36.
    Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing digital libraries with techlens+. In: Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital libraries, pp. 228–236. ACM (2004)Google Scholar
  37. 37.
    Wang, Q., Li, W., Zhang, X., Lu, S.: Academic paper recommendation based on community detection in citation-collaboration networks (2016)Google Scholar
  38. 38.
    Wang, Y., Zhai, E., Hu, J., Claper, Z. Chen.: Recommend classical papers to beginners. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2777–2781 (2010)Google Scholar
  39. 39.
    Yang, Z., Yin, D., Davison, B.D.: Recommendation in academia a joint multi-relational model. Ieee/Acm International Conference on Advances in Social Networks Analysis and Mining, pp. 566–571 (2014)Google Scholar
  40. 40.
    Zhang, P.Y., Du, Y.J., Wang, C.: A hybrid method based on hits for literature recommendation. Appl. Mech. Mater. 55-57, 1636–1641 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qiang Yang
    • 1
    • 2
  • Zhixu Li
    • 1
    • 3
    Email author
  • An Liu
    • 1
  • Guanfeng Liu
    • 1
    • 4
  • Lei Zhao
    • 1
  • Xiangliang Zhang
    • 2
  • Min Zhang
    • 1
  • Xiaofang Zhou
    • 1
    • 5
  1. 1.Institute of Artificial Intelligence, School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.King Abdullah University of Science and TechnologyJeddahSaudi Arabia
  3. 3.IFLYTEK ResearchSuzhouChina
  4. 4.Department of ComputingMacquarie UniversitySydneyAustralia
  5. 5.The University of QueenslandBrisbaneAustralia

Personalised recommendations