World Wide Web

, Volume 22, Issue 4, pp 1359–1399 | Cite as

IG-Tree: an efficient spatial keyword index for planning best path queries on road networks

  • Anasthasia Agnes HaryantoEmail author
  • Md. Saiful Islam
  • David Taniar
  • Muhammad Aamir Cheema


Due to the popularity of Spatial Databases, many search engine providers have started to expand their text searching capability to include geographical information. Because of this reason, many new queries on spatial objects affiliated with textual information, known as the Spatial Keyword Queries, have taken significant research interest in the past years. Unfortunately, most of existing works on Spatial Keyword Queries only focus on objects retrieval. There is barely any work on route planning queries, even though route planning is often needed in our daily life. In this research, we propose the Best Path Query, which we find the best optimum route from two different spatial locations that visits or avoids the objects that are specified by the textual data given by the user. We show that Best Path Query is an NP-Hard problem. We propose an efficient indexing technique, namely IG-Tree, and three different algorithms with different trade-offs to process the Best Path Queries on Road Networks. Our extensive experimental study demonstrates the efficiency and accuracy of our proposed approach.


Spatial databases Spatial keywords Trip planning queries IG-Tree Best path Road networks 



  1. 1.
    Adhinugraha, K.M., Taniar, D., Indrawan, M.: Finding reverse nearest neighbors by region. Concurrency Comput. Pract. Exp. 26(5), 1142–1156 (2014)CrossRefGoogle Scholar
  2. 2.
    Alsubaiee, S., Li, C.: Fuzzy keyword search on spatial data. In: International Conference on Database Systems for Advanced Applications, pp. 464–467 (2010)Google Scholar
  3. 3.
    Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arora, S.: Approximation schemes for np-hard geometric optimization problems: a survey. Math. Program. 97(1), 43–69 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: an efficient and robust access method for points and rectangles. In: ACM SIGMOD, pp. 322–331 (1990)Google Scholar
  6. 6.
    Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic Web search engines. In: ACM SIGMOD, pp. 277–288 (2006)Google Scholar
  7. 7.
    Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: Proceedings of the VLDB Endowment, vol. 6, pp. 217–228 (2013)Google Scholar
  8. 8.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. Proc. VLDB Endow. 2(1), 337–348 (2009)CrossRefGoogle Scholar
  9. 9.
    Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial Web objects. Proc. VLDB Endow. 3(1-2), 373–384 (2010)CrossRefGoogle Scholar
  10. 10.
    Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: ACM SIGMOD, pp. 373–384 (2011)Google Scholar
  11. 11.
    Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu, M.L.: Spatial keyword querying. In: Conceptual Modeling, pp. 16–29 (2012)Google Scholar
  12. 12.
    Cao, X., Chen, L., Cong, G., Guan, J., Phan, N.T., Xiao, X.: Kors: keyword-aware optimal route search system. In: IEEE ICDE, pp. 1340–1343 (2013)Google Scholar
  13. 13.
    Cao, X., Cong, G., Jensen, C.S., Yiu, M.L.: Retrieving regions of interest for user exploration. Proc. VLDB Endow. 7(9), 733–744 (2014)CrossRefGoogle Scholar
  14. 14.
    Choi, D.W., Chung, C.W.: A k-partitioning algorithm for clustering large-scale spatio-textual data. Inf. Syst. 64(Supplement C), 1 – 11 (2017)CrossRefGoogle Scholar
  15. 15.
    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: IEEE ICDE, pp. 656–665 (2008)Google Scholar
  16. 16.
    Gao, Y., Qin, X., Zheng, B., Chen, G.: Efficient reverse top-k boolean spatial keyword queries on road networks. IEEE Trans. Knowl. Data Eng. 27(5), 1205–1218 (2015)CrossRefGoogle Scholar
  17. 17.
    Guo, L., Shao, J., Aung, H., Tan, K.L.: Efficient continuous top-k spatial keyword queries on road networks. GeoInformatica 19(1), 29–60 (2015)CrossRefGoogle Scholar
  18. 18.
    Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (Sk) queries in geographic information retrieval (Gir) systems. In: ACM SSDBM, pp. 16–16 (2007)Google Scholar
  19. 19.
    Hashem, T., Hashem, T., Ali, M.E., Kulik, L.: Group trip planning queries in spatial databases. In: SSTD, pp. 259–276 (2013)Google Scholar
  20. 20.
  21. 21.∼inquirer/No.html. Last accessed 22 January 2018
  22. 22.
  23. 23.
    Hu, H., Li, G., Bao, Z., Feng, J., Wu, Y., Gong, Z., Xu, Y.: Top-k spatio-textual similarity join. IEEE Trans. Knowl. Data Eng. 28(2), 551–565 (2016)CrossRefGoogle Scholar
  24. 24.
    Hwang, K., Cho, S.: A lifelog browser for visualization and search of mobile everyday-life. Mob. Inf. Syst. 10(3), 243–258 (2014)Google Scholar
  25. 25.
    Jones, C.B., Abdelmoty, A.I., Finch, D., Fu, G., Vaid, S.: Geographic information science: proceedings of the third international conference, GIScience, Chap. The spirit spatial search engine: architecture, ontologies and spatial indexing (2004)Google Scholar
  26. 26.
    Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: Proceedings of the ACM/IEEE Conference on Supercomputing (1995)Google Scholar
  27. 27.
    Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On trip planning queries in spatial databases. In: SSTD, pp. 273–290 (2005)Google Scholar
  28. 28.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W.C., Lee, D., Wang, X.: Ir-tree: an efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23 (4), 585–599 (2011)CrossRefGoogle Scholar
  29. 29.
    Li, Y., Wu, D., Xu, J., Choi, B., Su, W.: Spatial-aware interest group queries in location-based social networks. Data Knowl. Eng. 92(Supplement C), 20–38 (2014)CrossRefGoogle Scholar
  30. 30.
    Li, Y., Li, G., Li, J., Yao, K.: Skqai: a novel air index for spatial keyword query processing in road networks. Inf. Sci. 430-431(Supplement C), 17 – 38 (2018)CrossRefGoogle Scholar
  31. 31.
    Long, C., Wong, R.C.W., Wang, K., Fu, A.W.C.: Collective spatial keyword queries: a distance owner-driven approach. In: ACM SIGMOD, pp. 689–700 (2013)Google Scholar
  32. 32.
    Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest neighbor search. In: ACM SIGMOD, pp. 349–360 (2011)Google Scholar
  33. 33.
    Luo, S., Luo, Y., Zhou, S., Cong, G., Guan, J., Yong, Z.: Distributed spatial keyword querying on road networks. In: EDBT, pp. 235–246 (2014)Google Scholar
  34. 34.
    Luo, C., Junlin, L., Li, G., Wei, W., Li, Y., Li, J.: Efficient reverse spatial and textual k nearest neighbor queries on road networks. Knowl-Based Syst. 93 (Supplement C), 121 – 134 (2016)CrossRefGoogle Scholar
  35. 35.
    Rocha-Junior, J.B., Nørvåg, K.: Top-K spatial keyword queries on road networks. In: EDBT, pp. 168–179 (2012)Google Scholar
  36. 36.
    Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route query. VLDB J. 17(4), 765–787 (2008)CrossRefGoogle Scholar
  37. 37.
    Soma, S.C., Hashem, T., Cheema, M.A., Samrose, S.: Trip planning queries with location privacy in spatial databases. World Wide Web 20(2), 205–236 (2017)CrossRefGoogle Scholar
  38. 38.
    Waluyo, A.B., Srinivasan, B., Taniar, D.: Research in mobile database query optimization and processing. Mob. Inf. Syst. 1(4), 225–252 (2005)Google Scholar
  39. 39.
    Waluyo, A.B., Taniar, D., Rahayu, W., Srinivasan, B.: Mobile service oriented architectures for nn-queries. J. Netw. Comput. Appl. 32(2), 434–447 (2009)CrossRefGoogle Scholar
  40. 40.
    Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: IEEE ICDE, pp. 541–552 (2011)Google Scholar
  41. 41.
    Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng. 24(10), 1889–1903 (2012)CrossRefGoogle Scholar
  42. 42.
    Xu, J., Lu, H.: Efficiently answer top-k queries on typed intervals. Inf. Syst. 71(Supplement C), 164–181 (2017)CrossRefGoogle Scholar
  43. 43.
    Xu, Y., Guan, J., Li, F., Zhou, S.: Scalable continual top-k keyword search in relational databases. Data Knowl. Eng. 86, 206–223 (2013)CrossRefGoogle Scholar
  44. 44.
    Yairi, I., Igi, S.: Mobility support gis with universal-designed data of barrier/barrier-free terrains and facilities for all pedestrians including the elderly and the disabled. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 2909–2914 (2006)Google Scholar
  45. 45.
    Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: IEEE ICDE, pp. 688–699 (2009)Google Scholar
  46. 46.
    Zhang, D., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in Web 2.0. In: IEEE ICDE, pp. 521–532 (2010)Google Scholar
  47. 47.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)Google Scholar
  48. 48.
    Zhang, P., Lin, H., Yao, B., Lu, D.: Level-aware collective spatial keyword queries. Inf. Sci. 378(Supplement C), 194 – 214 (2017)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: IEEE ICDE, pp. 423–434 (2015)Google Scholar
  50. 50.
    Zhong, R., Fan, J., Li, G., Tan, K.L., Zhou, L.: Location-aware instant search. In: ACM CIKM, pp. 385–394 (2012)Google Scholar
  51. 51.
    Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-Tree: an efficient index for knn search on road networks. In: ACM CIKM, pp. 39–48 (2013)Google Scholar
  52. 52.
    Zhong, R., Li, G., Tan, K.L., Zhou, L., Gong, Z.: G-tree: an efficient and scalable index for spatial search on road networks. IEEE Trans. Knowl. Data Eng. 27(8), 2175–2189 (2015)CrossRefGoogle Scholar
  53. 53.
  54. 54.
  55. 55.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Information TechnologyMonash UniversityMelbourneAustralia
  2. 2.School of Information and Communication TechnologyGriffith UniversityGold CoastAustralia

Personalised recommendations