Advertisement

World Wide Web

, Volume 22, Issue 5, pp 1953–1970 | Cite as

Spatio-temporal top-k term search over sliding window

  • Lisi Chen
  • Shuo ShangEmail author
  • Bin Yao
  • Kai Zheng
Article
Part of the following topical collections:
  1. Special Issue on Web Information Systems Engineering 2017

Abstract

In part due to the proliferation of GPS-equipped mobile devices, massive volumes of geo-tagged streaming text messages are becoming available on social media. It is of great interest to discover most frequent nearby terms from such tremendous stream data. In this paper, we present novel indexing, updating, and query processing techniques that are capable of discovering top-k most frequent nearby terms over a sliding window. Specifically, given a query location and a set of geo-tagged messages within a sliding window, we study the problem of searching for the top-k terms by considering term frequency, spatial proximity, and term freshness. We develop a novel and efficient mechanism to solve the problem, including a quad-tree based indexing structure, indexing update technique, and a best-first based searching algorithm. An empirical study is conducted to show that our proposed techniques are efficient and fit for users’ requirements through varying a number of parameters.

Keywords

Top-k Term Spatial Temporal 

References

  1. 1.
    Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J.M., Wei, Z., Yi, K.: Mergeable summaries. ACM Trans. Database Syst. 38(4), 26,1–26,28 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bansal, N., Koudas, N.: Blogscope: a system for online analysis of high volume text streams. In: VLDB, pp. 1410–1413 (2007)Google Scholar
  3. 3.
    Chen, L., Shang, S.: Approximate spatio-temporal top-k publish/subscribe. WWW J., online first: 1–23 (2018)Google Scholar
  4. 4.
    Chen, L., Shang, S., Zhang, Z., Cao, X., Jensen, C.S., Kalnis, P.: Location-aware top-k term publish/subscribe. In: ICDE, pp. 1–12 (2018)Google Scholar
  5. 5.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. PVLDB 2(1), 337–348 (2009)Google Scholar
  6. 6.
    Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)CrossRefGoogle Scholar
  8. 8.
    Demaine, E.D., Lȯpez-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet streams with limited space. In: ESA, pp. 348–360 (2002)Google Scholar
  9. 9.
    Efron, M., Golovchinsky, G.: Estimation methods for ranking recent information. In: SIGIR, pp. 495–504. ACM (2011)Google Scholar
  10. 10.
    Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656–665 (2008)Google Scholar
  11. 11.
    Guo, D., Zhu, Y., Xu, W., Shang, S., halls, Z. Ding.: How to find appropriate automobile exhibition Towards a personalized recommendation service for auto show. Neurocomputing 213, 95–101 (2016)CrossRefGoogle Scholar
  12. 12.
    Han, J., Zheng, K., Sun, A., Shang, S., Wen, J.: Discovering neighborhood pattern queries by sample answers in knowledge base. In: ICDE, pp. 1014–1025 (2016)Google Scholar
  13. 13.
    Hu, S., Wen, J., Dou, Z., Shang, S.: Following the dynamic block on the Web. World Wide Web 19(6), 1077–1101 (2016)CrossRefGoogle Scholar
  14. 14.
    Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding frequent elements in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W., Lee, D.L., Ir-tree, X. Wang.: An efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23 (4), 585–599 (2011)CrossRefGoogle Scholar
  16. 16.
    Li, Z., Shang, S., Xie, Q., Zhang, X.: Cost reduction for Web-based data imputation. In: DASFAA, pp. 438–452 (2014)Google Scholar
  17. 17.
    Liu, K., Yang, B., Shang, S., Li, Y., Ding, Z.: MOIR/UOTS: trip recommendation with user oriented trajectory search. In: MDM, pp. 335–337 (2013)Google Scholar
  18. 18.
    Liu, K., Li, Y., Dai, J., Shang, S., Zheng, K.: Compressing large scale urban trajectory data. In: CloudDP@EuroSys, pp. 3:1–3:6 (2014)Google Scholar
  19. 19.
    Liu, K., Li, Y., Ding, Z., Shang, S., Zheng, K.: Benchmarking big data for trip recommendation. In: ICCCN, pp. 1–6 (2014)Google Scholar
  20. 20.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)Google Scholar
  21. 21.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl. Data Eng. 28(11), 2827–2841 (2016)CrossRefGoogle Scholar
  22. 22.
    Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica, online first: 1–28 (2017)Google Scholar
  23. 23.
    Liu, A., Shen, X., Li, Z., Liu, G., Xu, J., Zhao, L., Zheng, K., Shang, S.: Differential private collaborative Web services qos prediction. WWW J., online first: 1–24 (2018)Google Scholar
  24. 24.
    Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. PVLDB 5(12), 1699 (2012)Google Scholar
  25. 25.
    Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and top-k elements in data streams. In: ICDT, pp. 398–412 (2005)Google Scholar
  26. 26.
    Metwally, A., Agrawal, D., El Abbadi, A.: An integrated efficient solution for computing frequent and top-k elements in data streams. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)CrossRefGoogle Scholar
  27. 27.
    Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2), 143–152 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ozsoy, M.G., Onal, K.D., Altingovde, I.S.: Result diversification for tweet search. In: WISE, pp. 78–89 (2014)Google Scholar
  29. 29.
    Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: SSTD, pp. 205–222 (2011)Google Scholar
  30. 30.
    Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.: Twitterstand: news in tweets. In: SIGSPATIAL, pp. 42–51 (2009)Google Scholar
  31. 31.
    Shang, S., Deng, K., Xie, K.: Best point detour query in road networks. In: ACM SIGSPATIAL, pp. 71–80 (2010)Google Scholar
  32. 32.
    Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the most accessible locations: reverse path nearest neighbor query in road networks. In: ACM SIGSPATIAL, pp. 181–190 (2011)Google Scholar
  33. 33.
    Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: PNN query processing on compressed trajectories. GeoInformatica 16(3), 467–496 (2012)CrossRefGoogle Scholar
  34. 34.
    Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT, pp. 156–167 (2012)Google Scholar
  35. 35.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Finding traffic-aware fastest paths in spatial networks. In: SSTD, pp. 128–145 (2013)Google Scholar
  36. 36.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in spatial networks. In: MDM, pp. 247–250 (2013)Google Scholar
  37. 37.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks, vol. 23 (2014)Google Scholar
  38. 38.
    Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)CrossRefGoogle Scholar
  39. 39.
    Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters in spatial networks. IEEE Trans. Knowl. Data Eng. 27(6), 1505–1518 (2015)CrossRefGoogle Scholar
  40. 40.
    Shang, S., Guo, D., Liu, J., Zheng, K., Wen, J.: Finding regions of interest using location based social media. Neurocomputing 173, 118–123 (2016)CrossRefGoogle Scholar
  41. 41.
    Shang, S., Chen, L., Wei, Z., Guo, D., Wen, J.: Dynamic shortest path monitoring in spatial networks. J. Comput. Sci. Technol. 31(4), 637–648 (2016)CrossRefGoogle Scholar
  42. 42.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.: Collective travel planning in spatial networks, vol. 28 (2016)Google Scholar
  43. 43.
    Shang, S., Zhu, S., Guo, D., Lu, M.: Discovery of probabilistic nearest neighbors in traffic-aware spatial networks. World Wide Web 20(5), 1135–1151 (2017)CrossRefGoogle Scholar
  44. 44.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)Google Scholar
  45. 45.
    Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest, vol. 29 (2017)Google Scholar
  46. 46.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Parallel trajectory similarity joins in spatial networks. VLDB J., online first: 1–26 (2018)Google Scholar
  47. 47.
    Skovsgaard, A., Sidlauskas, D., Jensen, C.S.: Scalable top-k spatio-temporal term querying. In: ICDE, pp. 148–159 (2014)Google Scholar
  48. 48.
    Teitler, B.E., Lieberman, M.D., Panozzo, D., Sankaranarayanan, J., Samet, H., Sperling, J.: Newsstand: a new view on news. In: SIGSPATIAL, pp. 18 (2008)Google Scholar
  49. 49.
    Wang, Y., Li, J., Zhong, Y., Zhu, S., Guo, D., Shang, S.: Discovery of accessible locations using region-based geo-social data. WWW J., online first: 1–18 (2018)Google Scholar
  50. 50.
    Wei, Z., Liu, X., Li, F., Shang, S., Du, X., Wen, J.: Matrix sketching over sliding windows. In: SIGMOD, pp. 1465–1480 (2016)Google Scholar
  51. 51.
    Wu, S., Lin, H., Hu, L., Gao, Y., Lu, D.: Finding frequent items in time decayed data streams. In: APWeb, pp. 17–29 (2016)Google Scholar
  52. 52.
    Xie, K., Deng, K., Shang, S., Zhou, X., Zheng, K.: Finding alternative shortest paths in spatial networks. ACM Trans. Database Syst. 37(4), 29,1–29,31 (2012)CrossRefGoogle Scholar
  53. 53.
    Xie, Q., Shang, S., Yuan, B., Pang, C., Zhang, X.: Local correlation detection with linearity enhancement in streaming data. In: CIKM, pp. 309–318 (2013)Google Scholar
  54. 54.
    Xie, X., Lu, H., Chen, J., Shang, S.: Top-k neighborhood dominating query. In: DASFAA, pp. 131–145 (2013)Google Scholar
  55. 55.
    Xu, Y., Chen, L., Yao, B., Shang, S., Zhu, S., Zheng, K., Li, F.: Location-based top-k term querying over sliding window. In: WISE, pp. 299–314 (2017)Google Scholar
  56. 56.
    Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: ICDE, pp. 136–147 (2014)Google Scholar
  57. 57.
    Yao, B., Chen, Z., Gao, X., Shang, S., Ma, S., Guo, M.: Flexible aggregate nearest neighbor queries in road networks. In: ICDE, pp. 1–12 (2018)Google Scholar
  58. 58.
    Yao, B., Zheng, W., Wang, Z., Chen, Z., Shang, S., Zheng, K., Guo, M.: Distributed in-memory analytics for big temporal data. In: DASFAA, pp. 1–16 (2018)Google Scholar
  59. 59.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: Efficient top k spatial keyword search. In: ICDE, pp. 901–912 (2013)Google Scholar
  60. 60.
    Zhang, D., Tan, K., Tung, A.K.H.: Scalable top-k spatial keyword search. In: EDBT, pp. 359–370 (2013)Google Scholar
  61. 61.
    Zhang, D., Chan, C., Tan, K.: Processing spatial keyword query as a top-k aggregation query. In: SIGIR, pp. 355–364 (2014)Google Scholar
  62. 62.
    Zhao, K., Chen, L., Cong, G.: Topic exploration in spatio-temporal document collections. In: SIGMOD, pp. 985–998 (2016)Google Scholar
  63. 63.
    Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: ICDE, pp. 230–241 (2013)Google Scholar
  64. 64.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories. In: ICDE, pp. 242–253 (2013)Google Scholar
  65. 65.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2014)CrossRefGoogle Scholar
  66. 66.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: ICDE, pp. 423–434 (2015)Google Scholar
  67. 67.
    Zheng, B., Wang, H., Zheng, K., Su, H., Liu, K., Shang, S.: Sharkdb: An in-memory column-oriented storage for trajectory analysis. World Wide Web 21(2), 455–485 (2018)CrossRefGoogle Scholar
  68. 68.
    Zhu, S., Wang, Y., Shang, S., Zhao, G., Wang, J.: Probabilistic routing using multimodal data. Neurocomputing 253, 49–55 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of WollongongWollongongAustralia
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina
  4. 4.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations