World Wide Web

, Volume 22, Issue 5, pp 2177–2207 | Cite as

Interference identification in smart grid communications

  • Jingping Yin
  • Weiwei Miao
  • Wen YeEmail author
  • Jiayan Teng
  • Chengling Jiang
  • Rui Liu
Part of the following topical collections:
  1. Special Issue on Big Data Management and Intelligent Analytics


The TD-LTE wireless private network for electric power systems is an important component of smart grids, and coverage analysis and interference identification are essential in operating and optimizing of power wireless private networks. This paper presents an approach to analyzing indoor and outdoor coverage scopes of cell radio signals and recognizing locations and sources of intra-network interference in the network deployed in a dense urban environment. This approach takes scenario modeling to represent terrain and on-ground objects given by digital maps, utilizes ray tracing to track the signal propagation trajectories, and calculates strength attenuation of radio signals due to signal propagation such as direct transmission, reflection, diffraction and refraction. The uniform grid is employed as the acceleration structure to speed up tracing signal propagation paths, and drive-testing measurement data and scenario-oriented propagation model calibration are used to improve analysis accuracy. Weak coverage spots and interference defect spots are defined and used to identify interference types and sources. We applied the approach to a tentative TD-LTE power wireless private network in a southern city in China, proving that the ray-tracing-based scheme is able to make precise analysis on coverage and interference in practical networks.


Smart grid Wireless private network Coverage Interference Ray tracing Scenario 



The work in the paper comes from the science and technology project funded by State Grid Jiangsu Electric Power Company, and is also supported by National Natural Science Foundation of China (No.61320106006, No.61532006).

Supplementary material

11280_2018_589_MOESM1_ESM.pdf (1.2 mb)
(PDF 1.24 MB)


  1. 1.
    Abhayawardhana, V.S., Wassell, I.J., Crosby, D., Sellars, M.P., Brown, M.G.: Comparison of empirical propagation path loss models for fixed wireless access systems. In: IEEE Conference on Vehicular Technology, pp. 73–77. IEEE (2005)Google Scholar
  2. 2.
    Alkhatib, O., Hardjawana, W., Vucetic, B.: Traffic modeling and optimization in public and private wireless access networks for smart grids. IEEE Trans. Smart Grid 5(4), 1949–1960 (2014)CrossRefGoogle Scholar
  3. 3.
    Carlesso, M., Antonopoulos, A., Granelli, F., Verikoukis, C.: Uplink scheduling for smart metering and real-time traffic coexistence in LTE networks. In: IEEE International Conference on Communications (ICC), pp 820–825. IEEE (2015)Google Scholar
  4. 4.
    Corre, Y., Lostanlen, Y.: Three-dimensional urban EM wave propagation model for radio network planning and optimization over large areas. IEEE Trans. Veh. Technol. 58(7), 3112–3123 (2009)CrossRefGoogle Scholar
  5. 5.
    Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid - the new and improved power grid: a survey. IEEE Commun. Surv. Tutorials 14(4), 944–980 (2012)CrossRefGoogle Scholar
  6. 6.
    Fujimoto, J., Tanaka, T., Iwata, K.: ARTS: Accelerated Ray-tracing system. IEEE Comput. Graph. Appl. 6(4), 16–26 (1986)CrossRefGoogle Scholar
  7. 7.
    Gan, M., Meissner, P., Mani, F., Leitinger, E., FrÖHle, M., Oestges, C., Witrisal, K., Zemen, T.: Calibration of indoor UWB sub-band divided ray tracing using multiobjective simulated annealing. In: 2014 IEEE International Conference on Communications (ICC), pp. 4844–4849. IEEE (2014)Google Scholar
  8. 8.
    Hagerling, C., Ide, C., Wietfeld, C.: Coverage and capacity analysis of wireless M2M technologies for smart distribution grid services. In: IEEE International Conference on Smart Grid Communications, pp. 368–373. IEEE (2014)Google Scholar
  9. 9.
    Jemai, J., Piesiewicz, R., Kurner, T.: Calibration of an indoor radio propagation prediction model at 2.4 GHz by measurements of the IEEE 802.11B preamble. In: 2005 IEEE 61St Vehicular Technology Conference, VTC 2005-Spring, pp. 111–115. IEEE (2005)Google Scholar
  10. 10.
    Jemai, J., Patrick, C.F.E., Pedersen, G.F., Kurner, T.: Calibration of a UWB sub-band channel model using simulated annealing. IEEE Trans. Antennas Propag. 57 (10), 3439–3443 (2009)CrossRefGoogle Scholar
  11. 11.
    Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52(2), 116–130 (1962)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuzlu, M., Pipattanasomporn, M., Rahman, S.: Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 67(4), 74–88 (2014)CrossRefGoogle Scholar
  13. 13.
    Lancia, P., Tennina, S., Graziosi, F., Lancia, P., Tennina, S.: Efficient urban coverage for relay aided smart energy wireless networks. In: IEEE 22nd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–5. IEEE (2017)Google Scholar
  14. 14.
    Li, L., Carin, L.: Multilevel fast multipole calibration of ray models with application to wireless propagation. IEEE Trans. Antennas Propag. 52(10), 2794–2800 (2004)CrossRefGoogle Scholar
  15. 15.
    Li, X.D.: Identifying Scenarios in Wireless Networks via Spatial Clustering. Master’s Thesis Beijing University of Posts and Telecommunications (2012)Google Scholar
  16. 16.
    Li, G.L., Wang, Y., Wang, T., Feng, J.H.: Location-aware top-k term Publish/Subscribe. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD’13, pp. 802–810. ACM Press (2013)Google Scholar
  17. 17.
    Liu, X., Ai, B., He, D., Guan, K., Zhong, Z.D., Wang, L.H.: The calibration of Ray Tracer based on indoor office measurement at 28 GHz. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 1415–1416. IEEE (2017)Google Scholar
  18. 18.
    Madueno, G.C., Nielsen, J.J., Kim, D., Pratas, N., Stefanovic, C., Popovski, P.: Assessment of LTE wireless access for monitoring of energy distribution in the smart grid. IEEE J. Sel. Areas Commun. 34(3), 675–688 (2015)CrossRefGoogle Scholar
  19. 19.
    Mathar, R., Reyer, M., Schmeink, M.: A cube oriented ray launching algorithm for 3D urban field strength prediction. In: 2007 IEEE International Conference on Communications, pp. 5034–5039. IEEE (2007)Google Scholar
  20. 20.
    Miao, W.W., Yin, J.P., Jiang, C.L.: Coverage analysis in TD-LTE wireless private networks for power systems: a 3D Ray-Tracing approach. In: 2018 IEEE International Conference on Big Data and Smart Computing (Bigcomp 2018), pp. 155–162. IEEE (2018)Google Scholar
  21. 21.
    Muller, C., Georg, H., Putzke, M., Wietfeld, C.: Performance analysis of radio propagation models for smart grid applications. In: IEEE International Conference on Smart Grid Communications, pp. 96–101. IEEE (2011)Google Scholar
  22. 22.
    Nielsen, J.J., Madueno, G.C., Pratas, N., Sorensen, R., Stefanovic, C., Popovski, P.: What can wireless cellular technologies do about the upcoming smart metering traffic. IEEE Commun. Mag. 53(9), 41–47 (2015)CrossRefGoogle Scholar
  23. 23.
    Okamoto, H., Kitao, K., Ichitsubo, S.: Outdoor-to-indoor propagation loss prediction in 800-MHz to 8-GHz band for an urban area. IEEE Trans. Veh. Technol. 58(3), 1059–1067 (2009)CrossRefGoogle Scholar
  24. 24.
    Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn. Publishing House of Electronics Industry, Beijing China (2013)Google Scholar
  25. 25.
    Sallabi, H.M., Vainikainen, P.: Improvements to diffraction coefficient for non-perfectly conducting wedges. IEEE Trans. Antennas Propag. 53(9), 3105–3109 (2005)CrossRefGoogle Scholar
  26. 26.
    Sarkar, T., Ji, Z., Kim, K., Medouri, A., Salazar-Palma, M.: A survey of various propagation models for mobile communication. IEEE Antennas Propag. Mag. 45(3), 51–82 (2003)CrossRefGoogle Scholar
  27. 27.
    Seidel, S.Y., Rappaport, T.S.: Site-specific propagation prediction for wireless in-building personal communication system design. IEEE Trans. Veh. Technol. 43(4), 879–891 (1994)CrossRefGoogle Scholar
  28. 28.
    Shirley, P., Marschner, S.: Fundamentals of Computer Graphics, 3rd edn. CRC Press, Boca Raton (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    Suffern, K.: Ray Tracing from the Ground Up. Tsinghua University Press, Beijing China (2011)Google Scholar
  30. 30.
    Sun, Y., Lin, X.N., Zhong, Y.Q.: TD-LTE private network performance analysis in smart grid. In: 4th International Conference on Information Technology and Management Innovation, pp. 6–9. Atlantis (2015)Google Scholar
  31. 31.
    Tong, Y.X., She, J.Y., Ding, B.L., Chen, L., Wo, T.Y., Xu, K.: Online minimum matching in real-time spatial data: experiments and analysis. Proc. VLDB Endowment (PVLDB) 9(12), 1053–1064 (2016)CrossRefGoogle Scholar
  32. 32.
    Tong, Y.X., She, J.Y., Ding, B.L., Wang, L.B., Chen, L.: Online mobile micro-task allocation in spatial crowdsourcing. In: Proceedings of the 32nd International Conference on Data Engineering (ICDE 2016), pp. 49–60. IEEE (2016)Google Scholar
  33. 33.
    TD Industry Alliance. TDIA/TN-001.1. Industry application specifications of TD-LTE broadband digital trunking communication systems [S] (2013)Google Scholar
  34. 34.
    Wei, S., Ai, B., He, D., Guan, K., Wang, L.H., Zhong, Z.D.: Calibration of Ray-Tracing simulator for millimeter-wave outdoor communications. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 1907–1908. IEEE (2017)Google Scholar
  35. 35.
    Xu, Y., Chen, L.S., Yao, B., Shang, S., Zhunzhi, S., Zheng, K., Li, F.: Location-based top-k term querying over sliding window. In: International Conference on Web Information Systems Engineering, pp. 299–314 (2017)Google Scholar
  36. 36.
    Zhang, X.Q., Sood, N., Siu, J., Sarris, C.D.: Calibration of a 3D Ray-Tracing model in railway environments. In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 80–90. IEEE (2015)Google Scholar
  37. 37.
    Zheng, K., Yang, Y., Shang, S., Yuan, N.J.: Towards efficient search for activity trajectories. In: IEEE International Conference on Data Engineering, pp. 8–12. IEEE (2013)Google Scholar
  38. 38.
    Zheng, B.L., Su, H., Hua w., Zheng, K., Zhou, X.F., Li, G.H.: Effieient clue-based route search on road networks. IEEE Trans. Knowl. Data Eng. 29 (9), 1846–1859 (2017)CrossRefGoogle Scholar
  39. 39.
    Zheng, K., Zheng, B., Xu, J., Liu, G., Liu, A., Li, Z.X.: Popularity-aware spatial keyword search on activity trajectories. World Wide Web 20(4), 1–25 (2017)CrossRefGoogle Scholar
  40. 40.
    Zhong, F., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., Zhu, Z, Lambotharan, S., Chin, W.H.: Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutorials 15(1), 21–38 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Grid Jiangsu Electric Power CompanyNanjingChina
  3. 3.Nari Technology Development Limited CompanyNanjingChina

Personalised recommendations