Advertisement

World Wide Web

, Volume 22, Issue 4, pp 1657–1667 | Cite as

E-voting scheme using secret sharing and K-anonymity

  • Yining LiuEmail author
  • Quanyu Zhao
Article

Abstract

E-voting maybe replaces the traditional voting scheme in the future, however, the security threat must be paid enough attention. In this paper, a novel e-voting scheme is proposed using secret sharing and k-anonymity, which not only satisfies the basic security goals such as the non-cheating, the universal verifiability, the confidentiality, and the anonymity, but also achieves the addition properties including coercion-resistance and unconditional security since the security of the proposed scheme does not rely on any computational hard problem.

Keywords

E-voting Secret sharing K-anonymity Coercion-resistance Unconditional security 

Notes

Acknowledgments

This work was partly supported by National Natural Science Foundation of China under grant No. 61662016, 61363069, Guangxi Key Laboratory of Trusted Software (kx201717), and Foundation of Guizhou Provincial Key Laboratory of Public Big Data.

References

  1. 1.
    Fujiwara, T.: Voting technology, political responsiveness, and infant health: evidence from Brazil. Econometrica. 83(2), 423–464 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aggarwal, R., Saffi, P., Sturgess, J.: The role of institutional investors in voting: Evidence from the securities lending market. J. Financ. 70(5), 2309–2346 (2015)CrossRefGoogle Scholar
  3. 3.
    Liaw, H.: A secure electronic voting protocol for general elections. Comput. Secur. 23(2), 107–119 (2004)CrossRefGoogle Scholar
  4. 4.
    Chang, C., Lee, J.: An anonymous voting mechanism based on the key exchange protocol. Comput. Secur. 25(4), 307–314 (2006)CrossRefGoogle Scholar
  5. 5.
    Chaum, D.: Untraceable electronic mail, return addresses and digital pseudonyms. Commun. ACM. 24(2), 84–90 (1981)CrossRefGoogle Scholar
  6. 6.
    Cortier, V., Eigner, F., Kremer, S., et al.: Type-based verification of electronic voting protocols. POST2015. LNCS. 9036, 303–323 (2015)Google Scholar
  7. 7.
    Grewal, G., Ryan, M., Chen, L., et al.: Du-vote: remote electronic voting with untrusted computers. 2015 I.E. 28th Comput. Secur. Found. Symp. 155–169 (2015)Google Scholar
  8. 8.
    Ryan, P., Schneider, S., Teague, V.: End-to-end verifiability in voting systems, from theory to practice. IEEE Secur. Priv. 13(3), 59–62 (2015)CrossRefGoogle Scholar
  9. 9.
    Cubric, M., Jefferies, A.: The benefits and challenges of large-scale deployment of electronic voting systems: university student views from across different subject groups. Comp. Educ. 87, 98–111 (2015)CrossRefGoogle Scholar
  10. 10.
    Chun, T., Min, S., Chi, Y.: An electronic voting protocol with deniable authentication for mobile ad hoc networks. Comput. Commun. 31(10), 2534–2540 (2008)CrossRefGoogle Scholar
  11. 11.
    Fan, C., Sun, W.: An efficient multi-receipt mechanism for uncoercible anonymous electronic voting. Math. Comput. Model. 48(9), 1661–1627 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Francesc, S., Josep, M., Miret, J., Jordi, P.: Simple and efficient hash-based verifiable mixing for remote electronic voting. Comput. Commun. 33(6), 667–675 (2010)CrossRefGoogle Scholar
  13. 13.
    Abe, M.: Mix-networks on permutation networks. AsiaCrypt’99. LNCS. 1716, 258–273 (1999)zbMATHGoogle Scholar
  14. 14.
    Jakobsson, M.: A practical mix. International Conference on the Theory and Applications of Cryptographic Techniques. EuroCrypt’98. LNCS. 1403, 448–461 (1998)Google Scholar
  15. 15.
    Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all nothing election scheme. Workshop on the Theory and Application of Cryptographic Techniques. EuroCrypt’93. LNCS. 765, 248–259 (1993)Google Scholar
  16. 16.
    Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. EuroCrypt’95. LNCS. 921, 393–403 (1995)zbMATHGoogle Scholar
  17. 17.
    Benaloh J.: Verifiable secret-ballot elections. Yale University, Department of Computer Science, (1987)Google Scholar
  18. 18.
    Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. Proc. Twenty-Sixth Annu. ACM Symp. Theor. Comput. 544–553 (1994)Google Scholar
  19. 19.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)CrossRefGoogle Scholar
  20. 20.
    Cohen J, Fischer M. A robust and verifiable cryptographically secure election scheme. Yale University. Department of Computer Science, (1985)Google Scholar
  21. 21.
    Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. EuroCrypt’2000. LNCS. 1807, 539–556 (2000)zbMATHGoogle Scholar
  22. 22.
    Lee, B., Kim, K.: Receipt-free electronic voting through collaboration of voter and honest verifier. Proc. JW-ISC2000. 101–108 (2000)Google Scholar
  23. 23.
    Malkhi, D., Margo, O., Pavlov, E.: E-voting without cryptography. FC’2002. LNCS. 2357, 1–15 (2002)zbMATHGoogle Scholar
  24. 24.
    Neff, C.: A verifiable secret shuffle and its application to e-voting. CCS’01, ACM. 116–125 (2001)Google Scholar
  25. 25.
    Peng, K., Aditya, R., Boyd, C., et al.: Multiplicative homomorphic e-voting. IndroCrypt’2004. LNCS. 3348, 61–72 (2004)zbMATHGoogle Scholar
  26. 26.
    Sako, K., Kilian, J.: Secure voting using partially compatible homomorphisms. Crypto’94. LNCS. 839, 411–424 (1994)zbMATHGoogle Scholar
  27. 27.
    Camenisch, J., Piveteau, J., Stadler, M., et al.: Blind signatures based on the discrete logarithm problem. EuroCrypt’94. LNCS. 950, 428–432 (1994)zbMATHGoogle Scholar
  28. 28.
    Chaum, D.: Blind signatures for untraceable payments. Crypto’82. 199–203 (1983)Google Scholar
  29. 29.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. AusCrypt’92. LNCS. 718, 244–251 (1992)zbMATHGoogle Scholar
  30. 30.
    Ibrahim, S., Kamat, M., Salleh, M., et al.: Secure e-voting with blind signature. NCTT. 2003, 193–197 (2003)Google Scholar
  31. 31.
    Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. Security Protocols 1997. LNCS. 1361, 25–35 (1997)zbMATHGoogle Scholar
  32. 32.
    Rivest, R.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Atreya, M., Paine, S., Hammond, B., et al.: Digital signatures. Osborne/McGraw-Hill, Berkeley (2002)Google Scholar
  34. 34.
    Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Priv. 2(1), 38–47 (2004)CrossRefGoogle Scholar
  35. 35.
    Liu, J., Au, H., Susilo, W., et al.: Linkable ring signature with unconditional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)CrossRefGoogle Scholar
  36. 36.
    Bohli, J., Müller-Quade, J., Röhrich, S.: Bingo voting: secure and coercion-free voting using a trusted random number generator. Vote-ID 2007. LNCS. 4896, 111–124 (2007)Google Scholar
  37. 37.
    Zhao, Q., Liu, Y.: E-voting scheme using secret sharing and K-anonymity. BWCCA. 2016, 893–900 (2016).  https://doi.org/10.1007/978-3-319-49106-6_91 Google Scholar
  38. 38.
    Shamir, A.: How to share a secret. Commun. ACM. 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Blakley, G.: Safeguarding cryptographic keys. Proc. AFIPS’79 Nat. Comput. Conf. 48, 313–317 (1979)Google Scholar
  40. 40.
    Mashhadi, S., Dehkordi, M.: Two verifiable multi-secret sharing schemes based on non-homogeneous linear recursion and LFSR public-key cryptosystem. Inf. Sci. 294, 31–40 (2015)CrossRefzbMATHGoogle Scholar
  41. 41.
    Hadavi, M., Jalili, R., Damian, E., et al.: Security and search ability in secret sharing based data outsourcing. Int. J. Inf. Secur. 14(6), 513–529 (2015)CrossRefGoogle Scholar
  42. 42.
    Harn, L., Lin, C., Li, Y.: Fair secret reconstruction in (t, n) secret sharing. J. Inf. Secur. Appl. 23, 1–7 (2015)Google Scholar
  43. 43.
    Song, Y., Li, Z., Li, Y., et al.: A new multi-use multi-secret sharing scheme based on the duals of minimal linear codes. Secur Commun. Netw. 8(2), 202–211 (2015)CrossRefGoogle Scholar
  44. 44.
    Benelux, J.: Secret sharing homomorphism: keeping shares of a secret secret. Crypt’86. LNCS. 263, 251–260 (1986)Google Scholar
  45. 45.
    Kabir, M.E., Wang, H., Bertino, E.: Efficient systematic clustering method for k-anonymization. Acta Informatica. 48(1), 51–66 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ciriani, V., Vimercati, S., Foresti, S., Samarati, P.: K-anonymity. Secure data management in decentralized systems. Springer US. 33, 323–353 (2007)Google Scholar
  47. 47.
    Zhang, Y., Chen, Q., Zhong, S.: Privacy-preserving data aggregation in mobile phone sensing. IEEE Trans. Inform. Forensics Secur. 11(5), 980–992 (2016)CrossRefGoogle Scholar
  48. 48.
    Xu, R., Morozov, K., Takagi, T.: On cheater identifiable secret sharing schemes secure against rushing adversary. IWSEC’2013. LNCS. 8231, 258–271 (2013)zbMATHGoogle Scholar
  49. 49.
    Lin, P.: Distributed secret sharing approach with cheater prevention based on QR code. IEEE Trans. Ind. Inform. 12(1), 384–392 (2016)MathSciNetGoogle Scholar
  50. 50.
    Chen, Z., Li, S., Zhu, Y., et al.: A cheater identifiable multi-secret sharing scheme based on the Chinese remainder theorem. Secur. Commun. Netw. 8(18), 3592–3601 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Trusted SoftwareGuilin University of Electronic TechnologyGuilinChina
  2. 2.Guizhou Provincial Key Laboratory of Public Big dataGuizhou UniversityGuiyangChina

Personalised recommendations