World Wide Web

, Volume 22, Issue 5, pp 2153–2175 | Cite as

Approximate spatio-temporal top-k publish/subscribe

  • Lisi Chen
  • Shuo ShangEmail author
Part of the following topical collections:
  1. Special Issue on Big Data Management and Intelligent Analytics


Location-based publish/subscribe plays a significant role in mobile information disseminations. In this light, we propose and study a novel problem of processing location-based top-k subscriptions over spatio-temporal data streams. We define a new type of approximate location-based top-k subscription, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription, that continuously feeds users with relevant spatio-temporal messages by considering textual similarity, spatial proximity, and information freshness. Different from existing location-based top-k subscriptions, Approximate Temporal Spatial-Keyword Top-k (ATSK) Subscription can automatically adjust the triggering condition by taking the triggering score of other subscriptions into account. The group filtering efficacy can be substantially improved by sacrificing the publishing result quality with a bounded guarantee. We conduct extensive experiments on two real datasets to demonstrate the performance of the developed solutions.


Publish/Subscribe Subscription Location Stream 


  1. 1.
    Amati, G., Amodeo, G., Gaibisso, C.: Survival analysis for freshness in microblogging search. In: CIKM, pp. 2483–2486. ACM (2012)Google Scholar
  2. 2.
    Chen, L., Cong, G.: Diversity-aware top-k publish/subscribe for text stream. In: SIGMOD, pp. 347–362 (2015)Google Scholar
  3. 3.
    Chen, L., Cong, G., Cao, X.: An efficient query indexing mechanism for filtering geo-textual data. In: SIGMOD, pp. 749–760 (2013)Google Scholar
  4. 4.
    Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013)Google Scholar
  5. 5.
    Chen, L., Cui, Y., Cong, G., Cao, X.: SOPS: A system for efficient processing of spatial-keyword publish/subscribe, vol. 7 (2014)Google Scholar
  6. 6.
    Chen, Z., Cafarella, M.J.: Integrating spreadsheet data via accurate and low-effort extraction. In: KDD, pp. 1126–1135 (2014)Google Scholar
  7. 7.
    Chen, L., Cong, G., Cao, X., Tan, K.: Temporal spatial-keyword top-k publish/subscribe. In: ICDE, pp. 255–266 (2015)Google Scholar
  8. 8.
    Chen, Z., Cafarella, M.J., Jagadish, H.V.: Long-tail vocabulary dictionary extraction from the Web. In: WSDM, pp. 625–634 (2016)Google Scholar
  9. 9.
    Chen, Z., Dadiomov, S., Wesley, R., Xiao, G., Cory, D., Cafarella, M.J., Mackinlay, J.: Spreadsheet property detection with rule-assisted active learning. In: CIKM, pp. 999–1008 (2017)Google Scholar
  10. 10.
    Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text vs. space: Efficient geo-search query processing. In: CIKM, pp. 423–432 (2011)Google Scholar
  11. 11.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial Web objects. In: PVLDB, pp. 337–348 (2009)Google Scholar
  12. 12.
    Efron, M., Golovchinsky, G.: Estimation methods for ranking recent information. In: SIGIR, pp. 495–504. ACM (2011)Google Scholar
  13. 13.
    Guo, D., Zhu, Y., Xu, W., Shang, S., Ding, Z.: How to find appropriate automobile exhibition halls: Towards a personalized recommendation service for auto show. Neurocomputing 213, 95–101 (2016)CrossRefGoogle Scholar
  14. 14.
    Haghani, P., Michel, S., Aberer, K.: Evaluating top-k queries over incomplete data streams. In: CIKM, pp. 877–886 (2009)Google Scholar
  15. 15.
    Haghani, P., Michel, S., Aberer, K.: The gist of everything new: Personalized top-k processing over Web 2.0 streams. In: CIKM, pp. 489–498 (2010)Google Scholar
  16. 16.
    Han, J., Zheng, K., Sun, A., Shang, S., Wen, J.: Discovering neighborhood pattern queries by sample answers in knowledge base. In: ICDE, pp. 1014–1025 (2016)Google Scholar
  17. 17.
    Hu, S., Wen, J., Dou, Z., Shang, S.: Following the dynamic block on the Web. World Wide Web 19(6), 1077–1101 (2016)CrossRefGoogle Scholar
  18. 18.
    Felipe, I.D., Hristidis, V, Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656–665 (2008)Google Scholar
  19. 19.
    Li, X., Croft, W.B.: Time-based language models. In: CIKM, pp. 469–475. ACM (2003)Google Scholar
  20. 20.
    Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: KDD, pp. 802–810 (2013)Google Scholar
  21. 21.
    Li, Z., Shang, S., Xie, Q., Zhang, X.: Cost reduction for Web-based data imputation. In: DASFAA, pp. 438–452 (2014)Google Scholar
  22. 22.
    Liang, H., Xu, Y., Tjondronegoro, D., Christen, P.: Time-aware topic recommendation based on micro-blogs. In: CIKM, pp. 1657–1661 (2012)Google Scholar
  23. 23.
    Liu, K., Yang, B., Shang, S., Li, Y., Ding, Z: MOIR/UOTS: Trip recommendation with user oriented trajectory search. In: MDM, pp. 335–337 (2013)Google Scholar
  24. 24.
    Liu, K., Li, Y., Dai, J., Shang, S., Zheng, K.: Compressing large scale urban trajectory data. In: CloudDP@EuroSys, pp. 3:1–3:6 (2014)Google Scholar
  25. 25.
    Liu, K., Li, Y., Ding, Z., Shang, S., Zheng, K.: Benchmarking big data for trip recommendation. In: ICCCN, pp. 1–6 (2014)Google Scholar
  26. 26.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: Error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)Google Scholar
  27. 27.
    Liu, J., Shang, S., Zheng, K., Wen, J.: Multi-view ensemble learning for dementia diagnosis from neuroimaging: An artificial neural network approach. Neurocomputing 195, 112–116 (2016)CrossRefGoogle Scholar
  28. 28.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl Data Eng. 28(11), 2827–2841 (2016)CrossRefGoogle Scholar
  29. 29.
    Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica, online first, 1–28 (2017)Google Scholar
  30. 30.
    Liu, A., Shen, X., Li, Z., Xu, J., Zhao, L., Zheng, K., Shang, S.: Differential private collaborative Web services qos prediction. World Wide Web, online first, 1–25 (2018)Google Scholar
  31. 31.
    Machanavajjhala, A., Vee, E., Garofalakis, M., Shanmugasundaram, J.: Scalable ranked publish/subscribe. PVLDB 1(1), 451–462 (2008)Google Scholar
  32. 32.
    Pripužić, K., žarko, I.P., Aberer, K.: Top-k/w publish/subscribe: finding k most relevant publications in sliding time window w. In: DEBS, pp. 127–138 (2008)Google Scholar
  33. 33.
    Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: SSTD, pp. 205–222 (2011)Google Scholar
  34. 34.
    Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the most accessible locations: Reverse path nearest neighbor query in road networks. In: ACM SIGSPATIAL, pp. 181–190 (2011)Google Scholar
  35. 35.
    Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X: PNN query processing on compressed trajectories. GeoInformatica 16(3), 467–496 (2012)CrossRefGoogle Scholar
  36. 36.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Finding traffic-aware fastest paths in spatial networks. In: SSTD, pp. 128–145 (2013)Google Scholar
  37. 37.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in spatial networks. In: MDM, pp. 247–250 (2013)Google Scholar
  38. 38.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)CrossRefGoogle Scholar
  39. 39.
    Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)CrossRefGoogle Scholar
  40. 40.
    Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters in spatial networks. IEEE Trans Knowl Data Eng 27(6), 1505–1518 (2015)CrossRefGoogle Scholar
  41. 41.
    Shang, S., Chen, L., Wei, Z., Guo, D., Wen, J.: Dynamic shortest path monitoring in spatial networks. J Comput Sci Technol 31(4), 637–648 (2016)CrossRefGoogle Scholar
  42. 42.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P: Collective travel planning in spatial networks. IEEE Trans. Knowl Data Eng 28(5), 1132–1146 (2016)CrossRefGoogle Scholar
  43. 43.
    Shang, S., Guo, D., Liu, J., Wen, J.: Prediction-based unobstructed route planning. Neurocomputing 213, 147–154 (2016)CrossRefGoogle Scholar
  44. 44.
    Shang, S., Guo, D., Liu, J., Zheng, K., Wen, J.: Finding regions of interest using location based social media. Neurocomputing 173, 118–123 (2016)CrossRefGoogle Scholar
  45. 45.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)Google Scholar
  46. 46.
    Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE Trans. Knowl Data Eng. 29(7), 1549–1562 (2017)CrossRefGoogle Scholar
  47. 47.
    Shang, S., Zhu, S., Guo, D., Lu, M.: Discovery of probabilistic nearest neighbors in traffic-aware spatial networks. World Wide Web 20(5), 1135–1151 (2017)CrossRefGoogle Scholar
  48. 48.
    Shang, S, Chen, L, Wei, Z, Jensen, CS, Zheng, K., Kalnis, P: Parallel trajectory similarity joins in spatial networks. VLDB J, online first, 1–25 (2018)Google Scholar
  49. 49.
    Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.: Top-k publish-subscribe for social annotation of news. PVLDB 6(6), 385–396 (2013)Google Scholar
  50. 50.
    Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: Ap-tree: Efficiently support continuous spatial-keyword queries over stream. In: ICDE, pp. 1107–1118 (2015)Google Scholar
  51. 51.
    Wang, Y., Li, J., Zhong, Y., Zhu, S., Guo, D., Shang, S.: Discovery of accessible locations using region-based geo-social data. WWW J, online first, pp. 1–18 (2018)Google Scholar
  52. 52.
    Wei, Z., Liu, X., Li, F., Shang, S., Du, X., Wen, J.: Matrix sketching over sliding windows. In: SIGMOD, pp. 1465–1480 (2016)Google Scholar
  53. 53.
    Wei, Z., He, X., Xiao, X., Wang, S., Shang, S., J. W. e. n.: Topppr: top-k personalized pagerank queries with precision guarantees on large graphs. In: SIGMOD, pp. 1–16 (2018)Google Scholar
  54. 54.
    Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: ICDE, pp. 541–552 (2011)Google Scholar
  55. 55.
    Xie, K., Deng, K., Shang, S., Zhou, X., Zheng, K.: Finding alternative shortest paths in spatial networks. ACM Trans. Database Syst. 37(4), 29:1–29:31 (2012)CrossRefGoogle Scholar
  56. 56.
    Xie, Q., Shang, S., Yuan, B., Pang, C., Zhang, X.: Local correlation detection with linearity enhancement in streaming data. In: CIKM, pp. 309–318 (2013)Google Scholar
  57. 57.
    Xie, X., Lu, H., Chen, J., Shang, S.: Top-k neighborhood dominating query. In: DASFAA, pp. 131–145 (2013)Google Scholar
  58. 58.
    Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: ICDE, pp. 136–147 (2014)Google Scholar
  59. 59.
    Yao, B., Chen, Z., Gao, X., Shang, S., Ma, S., Guo, M.: Flexible aggregate nearest neighbor queries in road networks. In: ICDE, pp. 1–12 (2018)Google Scholar
  60. 60.
    Yao, B., Zheng, W., Wang, Z., Chen, Z., Shang, S., Zheng, K., Guo, M.: Distributed in-memory analytics for big temporal data. In: DASFAA, pp. 1–16 (2018)Google Scholar
  61. 61.
    Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: Efficient top k spatial keyword search. In: ICDE, pp. 901–912 (2013)Google Scholar
  62. 62.
    Zhang, D., Tan, K. -L., Tung, A.K.H.: Scalable top-k spatial keyword search. In: EDBT, pp. 359–370 (2013)Google Scholar
  63. 63.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories. In: ICDE, pp. 242–253 (2013)Google Scholar
  64. 64.
    Zheng, B., Wang, H., Zheng, K., Su, H., Liu, K., Shang, S.: Sharkdb: An in-memory column-oriented storage for trajectory analysis. World Wide Web 21(2), 455–485 (2018)CrossRefGoogle Scholar
  65. 65.
    Zhu, S., Wang, Y., Shang, S., Zhao, G., Wang, J.: Probabilistic routing using multimodal data. Neurocomputing 253, 49–55 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of WollongongWollongongAustralia
  2. 2.King Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations