Advertisement

World Wide Web

, Volume 22, Issue 5, pp 2083–2104 | Cite as

Online delivery route recommendation in spatial crowdsourcing

  • Dezhi Sun
  • Ke Xu
  • Hao Cheng
  • Yuanyuan Zhang
  • Tianshu Song
  • Rui LiuEmail author
  • Yi Xu
Article
  • 252 Downloads
Part of the following topical collections:
  1. Special Issue on Big Data Management and Intelligent Analytics

Abstract

With the emergence of many crowdsourcing platforms, crowdsourcing has gained much attention. Spatial crowdsourcing is a rapidly developing extension of the traditional crowdsourcing, and its goal is to organize workers to perform spatial tasks. Route recommendation is an important concern in spatial crowdsourcing. In this paper, we define a novel problem called the Online Delivery Route Recommendation (OnlineDRR) problem, in which the income of a single worker is maximized under online scenarios. It is proved that no deterministic online algorithm for this problem has a constant competitive ratio. We propose an algorithm to balance three influence factors on a worker’s choice in terms of which task to undertake next. In order to overcome its drawbacks resulting from the dynamic nature of tasks, we devise an extended version which attaches gradually increased importance to the destination of the worker over time. Extensive experiments are conducted on both synthetic and real-world datasets and the results prove the algorithms proposed in this paper are effective and efficient.

Keywords

Route recommendation Spatial crowdsourcing Online algorithms 

References

  1. 1.
    Amazon mechanical turk. https://www.mturk.com/
  2. 2.
    Chen, C., Cheng, S., Lau, H.C., Misra, A.: Towards city-scale mobile crowdsourcing: Task recommendations under trajectory uncertainties. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1113–1119 (2015)Google Scholar
  3. 3.
    Cheng, Y., Yuan, Y., Chen, L., Giraud-Carrier, C.G., Wang, G.: Complex event-participant planning and its incremental variant. In: ICDE. IEEE, pp. 859–870 (2017)Google Scholar
  4. 4.
    Cheng, Y., Yuan, Y., Chen, L., Wang, G., Giraud-Carrier, C.G., Sun, Y.: Distr: A distributed method for the reachability query over large uncertain graphs. IEEE Trans. Parallel Distrib. Syst. 27(11), 3172–3185 (2016)Google Scholar
  5. 5.
    Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing. In: Proceedings of the 21st acm sigspatial international conference on advances in geographic information systems. ACM, pp. 324–333 (2013)Google Scholar
  6. 6.
    Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. Inf. Process. Lett. 83(2), 57–62 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gao, D., Tong, Y., She, J., Song, T., Chen, L., Xu, K.: Top-k team recommendation and its variants in spatial crowdsourcing. Data Sci. Eng. 2(2), 136–150 (2017)Google Scholar
  8. 8.
    Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist. 34(3), 307–318 (1987)zbMATHGoogle Scholar
  9. 9.
    Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: A survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Guo, D., Zhu, Y., Xu, W., Shang, S., Ding, Z.: How to find appropriate automobile exhibition halls: Towards a personalized recommendation service for auto show. Neurocomputing 213, 95–101 (2016)Google Scholar
  11. 11.
    Han, J., Zheng, K., Sun, A., Shang, S., Wen, J.: Discovering neighborhood pattern queries by sample answers in knowledge base. In: 32nd IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pp. 1014–1025 (2016)Google Scholar
  12. 12.
    Hu, S., Wen, J., Dou, Z., Shang, S.: Following the dynamic block on the Web. World Wide Web 19(6), 1077–1101 (2016)Google Scholar
  13. 13.
    Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows. J. Oper. Res. Soc. 43(6), 629–635 (1992)zbMATHGoogle Scholar
  14. 14.
    Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing. In: Proceedings of the 20th international conference on advances in geographic information systems. ACM, pp. 189–198 (2012)Google Scholar
  15. 15.
    Krumke, S.O.: Online optimization: Competitive analysis and beyond. ZIB (2006)Google Scholar
  16. 16.
    Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowdsourcing task workers. In: International Symposium on Spatial and Temporal Databases. Springer, pp. 137–156 (2015)Google Scholar
  17. 17.
    Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica online first, 1–28 (2017)Google Scholar
  18. 18.
    Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl. Data Eng. 28(11), 2827–2841 (2016)Google Scholar
  19. 19.
    Liu, L., Xu, J., Liao, S.S., Chen, H.: A real-time personalized route recommendation system for self-drive tourists based on vehicle to vehicle communication. Expert Syst. Appl. 41(7), 3409–3417 (2014)Google Scholar
  20. 20.
  21. 21.
    Qu, M., Zhu, H., Liu, J., Liu, G., Xiong, H.: A cost-effective recommender system for taxi drivers. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 45–54 (2014)Google Scholar
  22. 22.
    Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. IEEE Trans. Knowl. Data Eng. 29(7), 1549–1562 (2017)Google Scholar
  23. 23.
    Shang, S., Chen, L., Wei, Z., Guo, D., Wen, J.: Dynamic shortest path monitoring in spatial networks. J. Comput. Sci. Technol. 31(4), 637–648 (2016)Google Scholar
  24. 24.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.: Collective travel planning in spatial networks. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pp. 59–60 (2017)Google Scholar
  25. 25.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J., Kalnis, P.: Collective travel planning in spatial networks. IEEE Trans. Knowl. Data Eng. 28(5), 1132–1146 (2016)Google Scholar
  26. 26.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. PVLDB 10(11), 1178–1189 (2017)Google Scholar
  27. 27.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)Google Scholar
  28. 28.
    Shang, S., Guo, D., Liu, J., Wen, J.: Prediction-based unobstructed route planning. Neurocomputing 213, 147–154 (2016)Google Scholar
  29. 29.
    Shang, S., Guo, D., Liu, J., Zheng, K., Wen, J.: Finding regions of interest using location based social media. Neurocomputing 173, 118–123 (2016)Google Scholar
  30. 30.
    Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015)Google Scholar
  31. 31.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Finding traffic-aware fastest paths in spatial networks, in SSTD, pp. 128–145 (2013)Google Scholar
  32. 32.
    Shang, S., Lu, H., Pedersen, T.B., Xie, X.: Modeling of traffic-aware travel time in spatial networks, in MDM, pp. 247–250 (2013)Google Scholar
  33. 33.
    Shang, S., Wei, Z., Wen, J., Zhu, S.: Probabilistic nearest neighbor query in traffic-aware spatial networks. In: Web Technologies and Applications - 18th Asia-Pacific Web Conference, APWeb 2016, Suzhou, China, September 23-25, 2016. Proceedings, Part I, pp. 3–14 (2016)Google Scholar
  34. 34.
    Shang, S., Xie, K., Zheng, K., Liu, J., Wen, J.: VID join: Mapping trajectories to points of interest to support location-based services. J. Comput. Sci. Technol. 30(4), 725–744 (2015)Google Scholar
  35. 35.
    Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: PNN query processing on compressed trajectories. GeoInformatica 16(3), 467–496 (2012)Google Scholar
  36. 36.
    Shang, S., Yuan, B., Deng, K., Xie, K., Zhou, X.: Finding the most accessible locations: reverse path nearest neighbor query in road networks, in ACM SIGSPATIAL, pp. 181–190 (2011)Google Scholar
  37. 37.
    Shang, S., Zheng, K., Jensen, C.S., Yang, B., Kalnis, P., Li, G., Wen, J.: Discovery of path nearby clusters in spatial networks. IEEE Trans. Knowl. Data Eng. 27(6), 1505–1518 (2015)Google Scholar
  38. 38.
    Shang, S., Zhu, S., Guo, D., Lu, M.: Discovery of probabilistic nearest neighbors in traffic-aware spatial networks. World Wide Web 20(5), 1135–1151 (2017)Google Scholar
  39. 39.
    She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In: SIGMOD. ACM, pp. 1629–1643 (2015)Google Scholar
  40. 40.
    She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrangement and its variant for online setting. IEEE Trans. Knowl. Data Eng. 28(9), 2281–2295 (2016)Google Scholar
  41. 41.
    She, J., Tong, Y., Chen, L., Song, T.: Feedback-aware social event-participant arrangement. In: SIGMOD. ACM, pp. 851–865 (2017)Google Scholar
  42. 42.
    Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic online matching in real-time spatial crowdsourcing. In: ICDE. IEEE, pp. 1009–1020 (2017)Google Scholar
  43. 43.
    Su, H., Zheng, K., Huang, J., Jeung, H., Chen, L., Zhou, X.: Crowdplanner: A crowd-based route recommendation system. In: 2014 IEEE 30th international conference on Data engineering (icde). IEEE, pp. 1144–1155 (2014)Google Scholar
  44. 44.
    Tong, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: Challenges, techniques, and applications. Proceedings of the VLDB Endowment 10(12), 1988–1991 (2017)Google Scholar
  45. 45.
    Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv, W.: Slade: A smart large-scale task decomposer in crowdsourcing, IEEE Transactions on Knowledge and Data Engineering.  https://doi.org/10.1109/TKDE.2018.2797962 (2018)
  46. 46.
    Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., Ye, J., Lv, W.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 1653–1662 (2017)Google Scholar
  47. 47.
    Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in real-time spatial data: experiments and analysis. Proceedings of the Vldb Endowment 9(12), 1053–1064 (2016)Google Scholar
  48. 48.
    Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation in spatial crowdsourcing. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, pp. 49–60 (2016)Google Scholar
  49. 49.
    Tong, Y., She, J., Meng, R.: Bottleneck-aware arrangement over event-based social networks: the max-min approach. World Wide Web 19(6), 1151–1177 (2016)Google Scholar
  50. 50.
    Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.: Flexible online task assignment in real-time spatial data. Proceedings of the VLDB Endowment 10(11), 1334–1345 (2017)Google Scholar
  51. 51.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: A survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Varakantham, P., Mostafa, H., Fu, N., Lau, H.C.: Direct: A scalable approach for route guidance in selfish orienteering problems (2015)Google Scholar
  53. 53.
    Wang, Y., Li, J., Zhong, Y., Zhu, S., Guo, D., Shang, S.: Discovery of accessible locations using region-based geo-social data. World Wide Web, pp. 1–16 (2018)Google Scholar
  54. 54.
    Xie, K., Deng, K., Shang, S., Zhou, X., Zheng, K.: Finding alternative shortest paths in spatial networks. ACM Trans. Database Syst. 37(4), 29:1–29:31 (2012)Google Scholar
  55. 55.
    Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route planning under time-varying uncertainty. In: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pp. 136–147 (2014)Google Scholar
  56. 56.
    Zheng, B., Wang, H., Zheng, K., Su, H., Liu, K., Shang, S.: Sharkdb: an in-memory column-oriented storage for trajectory analysis. World Wide Web 21(2), 455–485 (2018)Google Scholar
  57. 57.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pp. 423–434 (2015)Google Scholar
  58. 58.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns from trajectories, in ICDE, pp. 242–253 (2013)Google Scholar
  59. 59.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2014)Google Scholar
  60. 60.
    Zhu, S., Wang, Y., Shang, S., Zhao, G., Wang, J.: Probabilistic routing using multimodal data. Neurocomputing 253, 49–55 (2017)Google Scholar
  61. 61.
    Zhu, X., Hao, R., Chi, H., Du, X.: Fineroute: Personalized and time-aware route recommendation based on check-ins. IEEE Trans. Veh. Technol. 66(11), 10461–10469 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dezhi Sun
    • 1
  • Ke Xu
    • 1
  • Hao Cheng
    • 1
  • Yuanyuan Zhang
    • 2
  • Tianshu Song
    • 1
  • Rui Liu
    • 1
    Email author
  • Yi Xu
    • 1
  1. 1.State Key Laboratory of Software Development Environment, School of Computer Science and EngineeringBeihang UniversityBeijingChina
  2. 2.China Academy of Telecommunications Technology and Datang Telecom TechnologyIndustry GroupBeijingChina

Personalised recommendations