Predicting e-book ranking based on the implicit user feedback

  • Bin Cao
  • Chenyu Hou
  • Hongjie Peng
  • Jing Fan
  • Jian Yang
  • Jianwei Yin
  • Shuiguang Deng
Article
  • 30 Downloads
Part of the following topical collections:
  1. Special Issue on Deep vs. Shallow: Learning for Emerging Web-scale Data Computing and Applications

Abstract

In this paper, we plan to predict a ranking on e-books by analyzing the implicit user behavior, and the goal of our work is to optimize the ranking results to be close to that of the ground truth ranking where e-books are ordered by their corresponding reader number. As far as we know, there exist little work on predicting the future e-book ranking. To this end, through analyzing various user behavior from a popular e-book reading mobile APP, we construct three groups of features that are related to e-book ranking, where some features are created based on the popular metrics from the e-commerce, e.g., conversion rates. Then, we firstly propose a baseline method by using the idea of learning to rank (L2R), where we train the ranking model for each e-book by taking all its past user feedback within a time interval into consideration. Then we further propose TDLR: a Time Decay based Learning to Rank method, where we separately train the ranking model on each day and combine these models by gradually decaying the importance of them over time. Through extensive experimental studies on the real-world dataset, our approach TDLR is proved to significantly improve the e-book ranking quality more than 10% when compared with the L2R method where no time decay is considered.

Keywords

E-book ranking Ranking prediction Implicit user behavior 

Notes

Acknowledgements

This research was partially supported by National Natural Science Foundation of China (No. 61602411, No.61772459, No.61772461), National Key Research and Development Program of China(No.2017YFB1400603), Key Research and Development Project of Zhejiang Province (No. 2015C01034, No.2015C01027), Natural Science Foundation of Zhejiang Province (No.LR18F020003).

References

  1. 1.
    Aggarwal, C.C.: Recommender systems: the textbook. Springer Publishing Company, Incorporated, Berlin (2016)CrossRefGoogle Scholar
  2. 2.
    Agichtein, E., Brill, E., Dumais, S.: Improving Web search ranking by incorporating user behavior information. In: SIGIR’06, pp. 19–26. ACM (2006)Google Scholar
  3. 3.
    Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: IMC’09, pp. 49–62. ACM (2009)Google Scholar
  4. 4.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: ICML’07, pp. 129–136. ACM (2007)Google Scholar
  6. 6.
    Chib, S.: Bayes regression with autoregressive errors: a gibbs sampling approach. J. Econ. 58(3), 275–294 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  8. 8.
    Dalip, D.H., Gonçalves, M.A., Cristo, M., Calado, P.: Exploiting user feedback to learn to rank answers in Q&A forums: a case study with stack overflow. In: SIGIR’13, pp. 543–552. ACM (2013)Google Scholar
  9. 9.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  10. 10.
    Jeon, J., Croft, W.B., Lee, J.H., Park, S.: A framework to predict the quality of answers with non-textual features. In: SIGIR’06, pp. 228–235. ACM (2006)Google Scholar
  11. 11.
    Joachims, T.: Optimizing search engines using clickthrough data. In: KDD’02, pp. 133–142. ACM (2002)Google Scholar
  12. 12.
    Kohavi, R.: Mining e-commerce data: the good, the bad, and the ugly. In: KDD’01, pp. 8–13. ACM (2001)Google Scholar
  13. 13.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  14. 14.
    Lee, D.H., Brusilovsky, P.: Reinforcing recommendation using implicit negative feedback. In: International conference on user modeling, adaptation, and personalization, pp. 422–427. Springer (2009)Google Scholar
  15. 15.
    Lehmann, S., Jackson, A.D., Lautrup, B.E.: Measures and mismeasures of scientific quality arXiv preprint physics/0512238 (2005)Google Scholar
  16. 16.
    Liu, J., Tang, M., Zheng, Z., Liu, X.F., Lyu, S.: Location-aware and personalized collaborative filtering for web service recommendation. IEEE Trans. Serv. Comput. 9(5), 686–699 (2016)CrossRefGoogle Scholar
  17. 17.
    Lv, Y., Moon, T., Kolari, P., Zheng, Z., Wang, X., Chang, Y.: Learning to model relatedness for news recommendation. In: WWW’11, pp. 57–66 (2011)Google Scholar
  18. 18.
    Mao, C., Chen, J., Towey, D., Chen, J., Xie, X.: Search-based qos ranking prediction for web services in cloud environments. Futur. Gener. Comput. Syst. 50, 111–126 (2015)CrossRefGoogle Scholar
  19. 19.
    Melo, E.V.D., Nogueira, E.A., Guliato, D.: Content-Based filtering enhanced by human visual attention applied to clothing recommendation. In: ICTAI’15, pp. 644–651 (2015)Google Scholar
  20. 20.
    Mohan, A., Chen, Z., Weinberger, K.: Web-Search ranking with initialized gradient boosted regression trees. In: Proceedings of the learning to rank challenge, pp. 77–89 (2011)Google Scholar
  21. 21.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order to the Web. Tech. rep., Stanford InfoLab (1999)Google Scholar
  22. 22.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)MathSciNetMATHGoogle Scholar
  23. 23.
    Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: KDD’05, pp. 239–248. ACM (2005)Google Scholar
  24. 24.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based collaborative filtering recommendation algorithms. In: WWW’01, pp. 285–295 (2001)Google Scholar
  25. 25.
    Sayyadi, H., Getoor, L.: Futurerank: ranking scientific articles by predicting their future pagerank. In: SDM’09, pp. 533–544. SIAM (2009)Google Scholar
  26. 26.
    Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT, pp. 156–167 (2012)Google Scholar
  27. 27.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB, J 23(3), 449–468 (2014)CrossRefGoogle Scholar
  28. 28.
    Surdeanu, M., Ciaramita, M., Zaragoza, H.: Learning to rank answers on large online Qa collections. In: Proceedings of the meeting of the association for computational linguistics, pp. 719–727 (2008)Google Scholar
  29. 29.
    Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.Y.: A theoretical analysis of Ndcg ranking measures. In: COLT’13 (2013)Google Scholar
  30. 30.
    Yang, D., Chen, T., Zhang, W., Lu, Q., Yu, Y.: Local implicit feedback mining for music recommendation. In: Recsys’12, pp. 91–98. ACM (2012)Google Scholar
  31. 31.
    Yin, P., Luo, P., Lee, W.C., Wang, M.: Silence is also evidence: interpreting dwell time for recommendation from psychological perspective. In: KDD’13, pp. 989–997. ACM (2013)Google Scholar
  32. 32.
    Yu, J., Tao, D., Wang, M., Rui, Y.: Learning to rank using user clicks and visual features for image retrieval. IEEE Transactions on Cybernetics 45(4), 767–779 (2015)CrossRefGoogle Scholar
  33. 33.
    Zheng, K., Su, H., Zheng, B., Shang, S., Xu, J., Liu, J., Zhou, X.: Interactivses. In: ICDE, pp. 423–434 (2015)Google Scholar
  34. 34.
    Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: Qos ranking prediction for cloud services. IEEE Trans. Parallel Distrib. Syst. 24(6), 1213–1222 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhou, Z.H.: Ensemble methods: foundations and algorithms. CRC Press, Boca Raton (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhejiang University of TechnologyHangZhouChina
  2. 2.Macquaire UniversitySydneyAustralia
  3. 3.Zhejiang UniversityHangZhouChina

Personalised recommendations