Context-aware graph pattern based top-k designated nodes finding in social graphs

  • Guanfeng Liu
  • Qun Shi
  • Kai Zheng
  • Zhixu Li
  • An Liu
  • Jiajie Xu
Article
  • 86 Downloads
Part of the following topical collections:
  1. Special Issue on Deep vs. Shallow: Learning for Emerging Web-scale Data Computing and Applications

Abstract

Graph Pattern Matching (GPM) plays a significant role in many real applications, where many applications often need to find Top-K matches of a specific node, (named as the designated node v d ) based on a pattern graph, rather than the entire set of matching. However, the existing GPM methods for matching the designated node v d in social graphs do not consider the social contexts like the social relationships, the social trust and the social positions which commonly exist in real applications, like the experts recommendation in social graphs, leading to deliver low quality designated nodes. In this paper, we first propose the conText-Aware Graph pattern based Top-K designed nodes finding problem (TAG-K), which involves the NP-Complete Multiple Constrained GPM problem, and thus it is NP-Complete. To address the efficiency and effectiveness issues of TAG-K in large-scale social graphs, we propose two indices, MA-Tree and SSC-Index, which can help efficiently find the Top-K matching. Furthermore, we propose an approximation algorithm, A-TAG-K. Using real social network datasets, we experimentally verify that A-TAG-K outperforms the existing methods in both efficiency and effectiveness for solving the TAG-K problem.

Keywords

Graph pattern matching Social graph 

Notes

Acknowledgments

This work was partially supported by Natural Science Foundation of China (Grant Nos. 61303019, 61572336, 61532018, 61402313, 61502324), Doctoral Fund of Ministry of Education of China (20133201120012), Postdoctoral Science Foundation of China (2015M571805, 2016T90492), Collaborative Innovation Center of Novel Software Technology and Industrialization, Jiangsu, China, and project supported by the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology), Grant No. 30916014107.

References

  1. 1.
    Berger, P., Luckmann, T.: The Social Construction of Reality: A Treatise in the Sociology of Knowledge. Anchor Books, New York (1966)Google Scholar
  2. 2.
    Biggs, N., Lloyd, E., Wilson, R.: Graph Theory. Oxford University Press, Oxford (1986)MATHGoogle Scholar
  3. 3.
    Chang, L., Lin, X., Zhang, W., Yu, J.X., Zhang, Y., Qin, L.: Optimal enumeration: efficient top-k tree matching. VLDB 8(5), 533–544 (2015)Google Scholar
  4. 4.
    Chevalier, F., Domenger, J.P., Pineau, J.B., Delest, M.: Retrieval of objects in video by similarity based on graph matching. Pattern Recogn. Lett. 28(8), 939–949 (2007)CrossRefGoogle Scholar
  5. 5.
    Cohen, S., Kimelfeld, B., Koutrika, G., Jan, V.: On principles of egocentric person search in social networks. In: Workshop on VLDS, pp 3–6 (2011)Google Scholar
  6. 6.
    Demuth, H.B., Beale, M.H., Jess, O.D., Hagan, T.M.: Neural Network Design. Martin Hagan Press (2014)Google Scholar
  7. 7.
    Ding, X., Jia, J., Li, J., Liu, J., Jini, H.: Top-k similarity matching in large graphs with attributes. In: DASFAA, pp 156–170 (2014)Google Scholar
  8. 8.
    Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: SIGMOD’12, pp 157–168 (2012)Google Scholar
  10. 10.
    Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. VLDB 6(13), 1510–1521 (2013)Google Scholar
  11. 11.
    Fani, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching: from intractable to polynomial time. VLDB 3(1-2), 264–275 (2010)Google Scholar
  12. 12.
    Lappas, T., Liu, K., Terzi, E.: A survey of algorithms and systems for expert location in social networks. In: Social Network Data Analytics, pp 215–241 (2011)Google Scholar
  13. 13.
    Liu, G., Wang, Y., Orgun, M.A.: Trust transitivity in complex social networks. In: AAAI, pp 1222–1229 (2011)Google Scholar
  14. 14.
    Liu, G., Wang, Y., Orgun, M.A.: Social context-aware trust network discovery in complex contextual social networks. In: AAAI, vol. 12, pp 101–107 (2012)Google Scholar
  15. 15.
    Liu, G., Wang, Y., Orgun, M.A., et al.: Optimal social trust path selection in complex social networks. In: AAAI, pp 1397–1398 (2010)Google Scholar
  16. 16.
    Liu, G., Wang, Y., Orgun, M.A., Lim, E.P.: Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Transactions on Services Computing (TSC) 6(2), (2013)Google Scholar
  17. 17.
    Liu, G., Zheng, K., Wang, Y., Orgun, M.A., Liu, A., Zhao, L., Zhou, X.: Multi-constrained graph pattern matching in large-scale contextual social graphs. In: ICDE, pp 351–362 (2015)Google Scholar
  18. 18.
    Liu, G., Zheng, K., Wang, Y., Orgun, M.A., Liu, A., Zhao, L., Zhou, X.: Multi-constrained graph pattern matching in large-scale contextual social graphs. In: ICDE’15, pp 351–362 (2015)Google Scholar
  19. 19.
    Milano, R., Baggio, R., Piattelli, R.: The effects of online social media on tourism websites. In: ENTER, pp 471–483 (2011)Google Scholar
  20. 20.
    Modiano, E.: Traffic grooming in wdm networks. IEEE Commun. Mag. 39(7), 124–129 (2001)CrossRefGoogle Scholar
  21. 21.
    Morris, M.R., Teevan, J., Panovich, K.: What do people ask their social networks, and why?: a survey study of status message q&a behavior. In: CHI., pp 1739–1748 (2010)Google Scholar
  22. 22.
    Rauch, M., Thomas, H., Peter, K.: Computing simulations on finite and infinite graphs. In: Annual Symposium o Foundations of Computer Science, pp 453–462 (1995)Google Scholar
  23. 23.
    Raymond, W.J., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)CrossRefGoogle Scholar
  24. 24.
    Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J., Weikum, G.: Efficient top-k querying over social-tagging networks. In: SIGIR, pp 523–530 (2008)Google Scholar
  25. 25.
    Song, J., Gao, L., Liu, L., Zhu, X., Sebe, N.: Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recogn. 75, 175–187 (2018)CrossRefGoogle Scholar
  26. 26.
    Song, J., Gao, L., Nie, F., Shen, H.T., Sebe, N.: Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans. Image Process. 25(11), 4999–5011 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Song, J., Shen, H.T., Wang, J., Huang, Z., Sebe, N., Wang, J.: A distance-computation-free search scheme for binary code databases. IEEE Trans. Multimedia 18(3), 484–495 (2016)CrossRefGoogle Scholar
  28. 28.
    Tang, J., Zhang, J., Yan, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and mining of academic social networks. In: KDD, pp 990–998 (2008)Google Scholar
  29. 29.
    Tian, Y., Patel, P.M.: Tale: A tool for approximate large graph matching. In: ICDE, pp 963–972 (2008)Google Scholar
  30. 30.
    Ullmann, R.J.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE TPAMI August(99), 1–1 (2017)Google Scholar
  32. 32.
    Yildirim, H., Chaoji, V., Zaki, M.J.: Grail: Scalable reachability index for large graphs. In: VLDB, pp 276–284 (2010)Google Scholar
  33. 33.
    Yoo, S., Yang, Y., Lin, F., Moon, I.: Mining social networks for personalized email prioritization. In: KDD, pp 967–976 (2009)Google Scholar
  34. 34.
    Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23(9), 3737 (2014)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs in graph databases. In: EDBT, pp 456–467 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guanfeng Liu
    • 1
    • 2
  • Qun Shi
    • 1
  • Kai Zheng
    • 3
  • Zhixu Li
    • 1
  • An Liu
    • 1
  • Jiajie Xu
    • 1
  1. 1.School of Computer Science and TechnologySoochow UniversitySuzhouChina
  2. 2.Jiangsu Key Laboratory of Image and Video Understanding for Social SafetyNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  3. 3.School of Computer Science and Engineering and Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations