World Wide Web

, Volume 21, Issue 4, pp 1141–1163 | Cite as

Joint user knowledge and matrix factorization for recommender systems

  • Yonghong YuEmail author
  • Yang Gao
  • Hao Wang
  • Ruili Wang
Part of the following topical collections:
  1. Special Issue on Web Information Systems Engineering


Currently, most of the existing recommendation methods treat social network users equally, which assume that the effect of recommendation on a user is decided by the user’s own preferences and social influence. However, a user’s own knowledge in a field has not been considered. In other words, to what extent does a user accept recommendations in social networks need to consider the user’s own knowledge or expertise in the field. In this paper, we propose a novel matrix factorization recommendation algorithm based on integrating social network information such as trust relationships, rating information of users and users’ own knowledge. Specifically, since we cannot directly measure a user’s knowledge in the field, we first use a user’s status in a social network to indicate a user’s knowledge in a field, and users’ status is inferred from the distributions of users’ ratings and followers across fields or the structure of domain-specific social network. Then, we model the final rating of decision-making as a linear combination of the user’s own preferences, social influence and user’s own knowledge. Experimental results on real world data sets show that our proposed approach generally outperforms the state-of-the-art recommendation algorithms that do not consider the knowledge level difference between the users.


Recommender systems Social networks User status Matrix factorization 



The authors would like to acknowledge the support for this work from NSFC (Grant Nos. 61432008, 61503178, 61403208) and NUPTSF (Grant No. NY217114).


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE 17(6), 734–749 (2005)Google Scholar
  2. 2.
    Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inform. Sci. 178(1), 37–51 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI (1998)Google Scholar
  4. 4.
    Cacheda, F., Carneiro, V., Fernández, D., Formoso, V.: Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable, high-performance recommender systems. TWEB 5(1), 2 (2011)CrossRefGoogle Scholar
  5. 5.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press (2012)Google Scholar
  6. 6.
    Guo, G., Zhang, J., Yorke-Smith, N.: Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In: AAAI (2015)Google Scholar
  7. 7.
    Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: SIGIR (2003)Google Scholar
  8. 8.
    Hofmann, T.: Latent semantic models for collaborative filtering. TOIS 22(1), 89–115 (2004)CrossRefGoogle Scholar
  9. 9.
    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: RecSys (2010)Google Scholar
  10. 10.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  12. 12.
    Linden, G., Smith, B., York, J.: recommendations: item-to-item collaborative filtering. Internet Comput. IEEE 7(1), 76–80 (2003)CrossRefGoogle Scholar
  13. 13.
    Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve the accuracy of collaborative filtering. Knowl.-Based Syst. 56, 156–166 (2014)CrossRefGoogle Scholar
  14. 14.
    Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: social recommendation using probabilistic matrix factorization. In: CIKM (2008)Google Scholar
  15. 15.
    Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In: SIGIR, pp. 203–210 (2009)Google Scholar
  16. 16.
    Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM, pp. 287–296 (2011)Google Scholar
  17. 17.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: AAAI/IAAIGoogle Scholar
  18. 18.
    Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: NIPS (2007)Google Scholar
  19. 19.
    Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIOPT 19(4), 1574–1609 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep., Stanford InfoLab (1999)Google Scholar
  21. 21.
    Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: ICML (2005)Google Scholar
  22. 22.
    Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: ICML (2007)Google Scholar
  23. 23.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce (2000)Google Scholar
  24. 24.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender system – a case study. In: WebKDD Workshop (2000)Google Scholar
  25. 25.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW (2001)Google Scholar
  26. 26.
    Seung, D., Lee, L.: Algorithms for non-negative matrix factorization. In: NIPS (2001)Google Scholar
  27. 27.
    Srebro, N., Rennie, J., Jaakkola, T.S.: Maximum-margin matrix factorization. In: NIPS (2004)Google Scholar
  28. 28.
    Tang, J., Gao, H., Liu, H., Das Sarma, A.: eTrust: understanding trust evolution in an online world. In: KDD, pp. 253–261 (2012)Google Scholar
  29. 29.
    Ungar, L.H., Foster, D.P.: Clustering methods for collaborative filtering. In: AAAI Workshop on Recommendation Systems (1998)Google Scholar
  30. 30.
    Wang, C., Dong, X., Zhou, F., Cao, L., Chi, C.H.: Coupled attribute similarity learning on categorical data. TNNLS 26(4), 781–797 (2015)MathSciNetGoogle Scholar
  31. 31.
    Xue, G.R., Lin, C., Yang, Q., Xi, W., Zeng, H.J., Yu, Y., Chen, Z.: Scalable collaborative filtering using cluster-based smoothing. In: SIGIR (2005)Google Scholar
  32. 32.
    Yang, X., Steck, H., Liu, Y.: Circle-based recommendation in online social networks. In: KDD, pp. 1267–1275 (2012)Google Scholar
  33. 33.
    Yang, B., Lei, Y., Liu, D., Liu, J.: Social collaborative filtering by trust. In: IJCAI, pp. 2747–2753 (2013)Google Scholar
  34. 34.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. TOIS 33(3), 1–44 (2015)CrossRefGoogle Scholar
  35. 35.
    Yin, H., Cui, B., Huang, Z., Wang, W., Wu, X., Zhou, X.: Joint modeling of users’ interests and mobility patterns for point-of-interest recommendation. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 819–822. ACM (2015)Google Scholar
  36. 36.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhang, C.: Modeling location-based user rating profiles for personalized recommendation. TKDD 9(3), 1–41 (2015)CrossRefGoogle Scholar
  37. 37.
    Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation. TOIS 35(2), 1–44 (2016)CrossRefGoogle Scholar
  38. 38.
    Yu, Y., Chen, X.: A survey of point-of-interest recommendation in location-based social networks. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)Google Scholar
  39. 39.
    Yu, Y., Wang, C., Gao, Y., Cao, L., Chen, X.: A coupled clustering approach for items recommendation. In: PAKDD, pp. 365–376 (2013)Google Scholar
  40. 40.
    Yu, Y., Gao, Y., Wang, H., Wang, R.: Joint user knowledge and matrix factorization for recommender systems. In: WISE, pp. 77–91. Springer (2016)Google Scholar
  41. 41.
    Yu, Y., Wang, C., Wang, H., Gao, Y.: Attributes coupling based matrix factorization for item recommendation. Appl. Intell. 46(3), 521–533 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.TongDa CollegeNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.State Key Lab for Novel Software TechnologyNanjing UniversityNanjingPeople’s Republic of China
  3. 3.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations