Advertisement

An Efficient Hybrid Computing Environment to Develop a Confidential and Authenticated IoT Service Model

  • R. Saravana RamEmail author
  • M. Vinoth Kumar
  • S. Ramamoorthy
  • B. Saravana Balaji
  • T. Rajesh Kumar
Article
  • 8 Downloads

Abstract

The applications and scope of the Internet of Things (IoT) goes on increasing when cloud computing combines with IoT. Cloud enriches the capacity of IoT in various sectors such as Home Automation, Healthcare, Industrial IoT, etc. One of the major challenges in construction of today’s smart environment is to ensure the confidentiality and authentication in data transmission of the environment. Many existing systems attempted to provide a secure IoT environment but failed to ensure the efficiency in its security. Due to this problem, the capability of IoT and Cloud comes down and suffers to produce an optimal environment. In this regard, an optimal hybrid computing model containing cloud and edge computing has been proposed to develop a confidence assessment system to ensure the security in a IoT environment. The proposed model is an amalgamation of confidence assessment system and utility pattern of dynamic load balancing in cloud and edge computing. The effective design of the edge network and edge policy minimizes the resource utilization and improves the capability of the confidence assessment system. In the proposed system, the utility factor pattern is embedded in cloud and utility syntax pattern is embedded in the edge policy to enhance the applications of IoT and Cloud services. The edge network helps the edge policy in embedding the utility syntax pattern based on confidence assessment system. The proposed model has been compared with various existing models and results in producing an optimal secure IoT environment.

Keywords

IoT-cloud Confidence assessment system Optimal utility model Implicit attacks 

Abbreviations

C

Confidence

Pr

Proof

Iv

Initial value

Ur

Usage rate

DF

Digital format

Nec

Necessity

Notes

Compliance with Ethical Standards

Conflict of interest

Authors declares no conflict of interest.

Ethical Statement

This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials,17(4), 2347–2376.CrossRefGoogle Scholar
  2. 2.
    Botta, A., Donato, W. D., & Persico, V. (2016). Integration of cloud computing and internet of things: a survey. Future Generation Computer Systems,56, 684–700.CrossRefGoogle Scholar
  3. 3.
    Yang, J., Wang, C., Zhao, Q., Jiang, B., Lv, Z., & Sangaiah, A. K. (2018). Marine surveying and mapping system based on cloud computing and internet of things. Future Generation Computer Systems,85, 39–50.CrossRefGoogle Scholar
  4. 4.
    Zhou, J., Cao, Z., Dong, X., & Vasilakos, A. V. (2017). Security and privacy for cloud-based IoT: Challenges. IEEE Communications Magazine,55(1), 26–33.CrossRefGoogle Scholar
  5. 5.
    Kim, H.-W., & Jeong, Y.-S. (2018). Secure authentication-management human-centric scheme for trusting personal resource information on mobile cloud computing with blockchain. Human-Centric Computing and Information Sciences,8, 11.  https://doi.org/10.1186/s13673-018-0136-7.CrossRefGoogle Scholar
  6. 6.
    Ahmed, A., Bakar, K. A., Channa, M. I., Haseeb, K., & Khan, A. W. (2016). A trust aware routing protocol for energy constrained wireless sensor network. Telecommunication Systems,61(1), 123–140.CrossRefGoogle Scholar
  7. 7.
    Granjal, J., Monteiro, E., & Silva, J. S. (2015). Security for the internet of things: A survey of existing protocols and open research issues. IEEECommunications Surveys and Tutorials,17(3), 1294–1312.CrossRefGoogle Scholar
  8. 8.
    Jiang, W., Wang, G., Bhuiyan, M. Z. A., & Wu, J. (2016). Understanding graph-based trust evaluation in online social networks: Methodologies and challenges. ACM Computing Surveys,49(1), 1–35.CrossRefGoogle Scholar
  9. 9.
    Wang, T., Zeng, J., Lai, Y., Cai, Y., Tian, H., Chen, Y., et al. (2017). Data collection from WSNs to the cloud based on mobile fog elements. Future Generation Computer Systems.  https://doi.org/10.1016/j.future.2017.07.031.CrossRefGoogle Scholar
  10. 10.
    Wang, T., Zhou, J., Huang, M., Bhuiyan, M., Liu, A., Xu, W., et al. (2018). Fog-based storage technology to fight with cyber threat. Future Generation Computer Systems,83, 208–218.CrossRefGoogle Scholar
  11. 11.
    Satyanarayanan, M. (2017). The emergence of edge computing. Computer,50(1), 30–39.CrossRefGoogle Scholar
  12. 12.
    Wang, T., Zhang, G., Bhuiyan, Z. A., Liu, A., Jia, W., & Xie, M. (2018). A novel trust mechanism based on fog computing in sensor-cloud system. Future Generation Computer Systems.  https://doi.org/10.1016/j.future.2018.05.049.CrossRefGoogle Scholar
  13. 13.
    Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal,3(5), 637–646.CrossRefGoogle Scholar
  14. 14.
    Suryani, V., Sulistyo, S., & Widyawan, W. (2017). Internet of things (iot)framework for granting trust among objects. Journal of Information Processing Systems,13(6), 1613–1627.Google Scholar
  15. 15.
    Liu, X., Liu, Y., Liu, A., & Yang, L. T. (2018). Defending on–off attacks using light probing messages in smart sensors for industrial communication systems. IEEE Transactions on Industrial Informatics.  https://doi.org/10.1109/tii.2018.2836150.CrossRefGoogle Scholar
  16. 16.
    Chen, I. R., Guo, J., & Bao, F. (2017). Trust management for SOA-based IoT andits application to service composition. IEEE Transactions on Services Computing,9(3), 482–495.CrossRefGoogle Scholar
  17. 17.
    Alshehri, M. D., Hussain, F. K., & Hussain, O. K. (2018). Clustering-driven intelligent trust management methodology for the internet of things(CITM-IoT). Mobile Networks and Applications,23, 419–431.CrossRefGoogle Scholar
  18. 18.
    Duan, J., Gao, D., Yang, D., Foh, C. H., & Chen, H. H. (2017). An energy aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications. IEEE Internet of Things Journal,1(1), 58–69.CrossRefGoogle Scholar
  19. 19.
    Meng, W., Li, W., Su, C., Zhou, J., & Lu, R. (2018). Enhancing trust management for wireless intrusion detection via traffic sampling in the era of big data. IEEE Access,6, 7234–7243.CrossRefGoogle Scholar
  20. 20.
    Yang, C., Liu, C., Zhang, X., Nepal, S., & Chen, J. (2015). A time efficientapproach for detecting errors in big sensor data on cloud. IEEETransactions on Parallel and Distributed Systems,26(2), 329–339.CrossRefGoogle Scholar
  21. 21.
    Zhu, C., Leung, V. C. M., Yang, L. T., Shu, L., Rodrigues, J. J. P. C., & Li, X. (2015). Trust assistance in sensor-cloud. In Computer Communications Workshops, pp. 342–347.Google Scholar
  22. 22.
    Barcelo, M., Correa, A., Llorca, J., Tulino, A., Vicario, J. L., & Morell, A. (2016). Iot-cloud service optimization in next generation smart environments. IEEE Journal on Selected Areas in Communications,34(12), 4077–4090.CrossRefGoogle Scholar
  23. 23.
    Kowsigan, M., & Balasubramanie, P. (2018). A novel resource clustering model to develop an efficient wireless personal cloud environment. Turkish Journal of Electrical Engineering and Computer Sciences,27(3), 2156–2169.CrossRefGoogle Scholar
  24. 24.
    Wang, T., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Cao, J. (2018). Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Communications Magazine,56(3), 128–133.CrossRefGoogle Scholar
  25. 25.
    Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E., Terasawa, K., & Kitazawa, A. (2018). Fogflow: Easy programming of IoT services over cloud and edges for smart cities. IEEE Internet of Things Journal,5(2), 696–707.CrossRefGoogle Scholar
  26. 26.
    Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2019). LSB: A lightweight scalable blockchain for IoT security and anonymity. Journal of Parallel and Distributed Computing,134, 180–197.CrossRefGoogle Scholar
  27. 27.
    Hansch, G., Schneider, P., Fischer, K., & Böttinger, K. (2019). A unified architecture for industrial IoT security requirements in open platform communications. In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, pp. 325–332.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • R. Saravana Ram
    • 1
    Email author
  • M. Vinoth Kumar
    • 2
  • S. Ramamoorthy
    • 3
  • B. Saravana Balaji
    • 4
  • T. Rajesh Kumar
    • 5
  1. 1.Department of Electronics and Communication EngineeringAnna University, University College of Engineering DindigulDindigulIndia
  2. 2.Department of Computer Science and EngineeringAnna University, University College of Engineering DindigulDindigulIndia
  3. 3.Department of Computer Science and EngineeringSRM Institute of Science and TechnologyKattankulathur, KanchipuramIndia
  4. 4.Department of Information TechnologyLebanese French UniversityErbilIraq
  5. 5.Department of Information TechnologySri Krishna College of TechnologyCoimbatoreIndia

Personalised recommendations