Advertisement

An Octagonal Shaped Monopole Antenna for UWB Applications with Band Notch Characteristics

  • Narinder SharmaEmail author
  • Sumeet Singh Bhatia
  • Vipul Sharma
  • Jagtar Singh Sivia
Article
  • 8 Downloads

Abstract

This article presents a microstrip-fed octagonal shaped monopole antenna with dual band notched characteristics for UWB applications. Partial ground plane has been employed in the geometry of proposed antenna to improve the VSWR bandwidth over the entire range of UWB (3.1–10.6 GHz). Initially, the proposed antenna exhibits the VSWR bandwidth of 9.06 GHz (121.28%) with a frequency range of 2.94–12.0 GHz and after introducing C-shaped slot and complementary split ring resonator on the geometry of octagonal shaped radiating patch, dual band notched function has been acquired at Wi-MAX (3.5 GHz) and upper WLAN (5.8 GHz) frequency bands. The overall dimensions of proposed UWB antenna are 30 mm × 30 mm. The proposed antenna is designed and simulated using Ansys HFSS V13 simulator, its fabricated prototype is also tested to validate the simulated results with experimental ones. Both the results are in reasonable agreement with each other. An experimental result also reveals that the proposed antenna depicts nearly omni-directional pattern like dipole antenna.

Keywords

Wi-Max WLAN Band notch CSRR Monopole antenna UWB 

Notes

References

  1. 1.
    Sharma, N., & Sharma, V. (2017). A journey of antenna from dipole to fractal: A review. International Journal of Engineering and Technology,6, 317–351.Google Scholar
  2. 2.
    Sharma, N., & Sharma, V. (2017). A design of microstrip patch antenna using hybrid fractal slot for wideband applications. Ain Shams Engineering Journal.  https://doi.org/10.1016/j.asej.2017.05.008.CrossRefGoogle Scholar
  3. 3.
    Bhatia, S.-S., Sivia, J.-S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communications.  https://doi.org/10.1107/s11277-018-5891-2.CrossRefGoogle Scholar
  4. 4.
    Bhatia, S.-S., Sharma, M., & Rana, S.-B. (2018). A novel design of circular patch antenna loaded with elliptical slots for wireless communications. I-manager’s Journal on Communication Engineering and Systems,7(3), 1–8.  https://doi.org/10.26634/jcs.7.3.14172.CrossRefGoogle Scholar
  5. 5.
    Amman, M.-J. (2001). Control of the impedance bandwidth of wideband planar monopole antennas using a bevelling technique. Microwave and Optical Technology Letters,30(4), 229–232.CrossRefGoogle Scholar
  6. 6.
    Lee, E., Hall, P.-S., & Gardener, P. (1999). Compact wideband planar monopole antenna. Electronics Letters,35(35), 2157–2158.CrossRefGoogle Scholar
  7. 7.
    Ammann, M.-J., & Chen, Z.-N. (2003). A wide-band shorted planar monopole with bevel. IEEE Transactions on Antennas and Propagation,51(4), 901–903.CrossRefGoogle Scholar
  8. 8.
    Anob, P.-V., Ray, K.-P., & Kumar, G. (2001). Wideband orthogonal square monopole antennas with semi-circular base. IEEE Antennas Propagation Symposium, Boston,3, 294–297.Google Scholar
  9. 9.
    Antonino, D.-E., Cabedo, F.-M., Ferrando, B.-M., & Valero, N.-A. (2003). Wideband double-fed planar monopole antennas. Electronics Letters,39(23), 1635–1636.CrossRefGoogle Scholar
  10. 10.
    Wong, K.-L., Wu, C.-H., & Su, S.-W. (2005). Ultra wide-band square planar metal-plate monopole antenna with a trident-shaped feeding strip. IEEE Transactions on Antennas and Propagation,53(4), 1262–1269.CrossRefGoogle Scholar
  11. 11.
    Su, S., Wong, K., & Tang, C. (2004). Ultra-wideband square planar antenna for IEEE 802.16a operating in the 2–11 GHz band. Microwave and Optical Technology Letters,42(6), 463–466.CrossRefGoogle Scholar
  12. 12.
    Sharma, N., & Bhatia, S.-S. (2018). Split ring resonator based multiband hybrid fractal antennas for wireless applications. AEUE-International Journal of Electronics and Communications,93, 39–52.CrossRefGoogle Scholar
  13. 13.
    Bhatia, S.-S., Sahni, A., & Rana, S.-B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress in Electromagnetics Research M,70, 21–31.Google Scholar
  14. 14.
    Liu, W., Xu, P., & Jiang, T. (2016). A design of UWB monopole antenna with double band-notch characteristic. In 6th International conference on inst. & measur., comp., comm., & cont. (pp. 956–958).Google Scholar
  15. 15.
    Niu, S.-F., Gao, G.-P., Li, M., Hu, Y.-S., & Li, B.-N. (2010). Design of a novel elliptical monopole UWB antenna with dual band-notched function. Microwave and Optical Technology Letters,52(6), 1306–1309.CrossRefGoogle Scholar
  16. 16.
    Jalil, Y.-E., Chakrabarty, C.-K., & Kasi, B. (2014). A compact ultra wideband antenna with band notched design. In IEEE 2nd international symposium on telephone technology (pp. 408–412).Google Scholar
  17. 17.
    Wu, W., Yuan, B., & Wu, A. (2018). A quad element UWB MIMO antenna with band notch and reduced mutual coupling based on EBG structures. International Journal of Antenna and Propagation,2018, 8490740.Google Scholar
  18. 18.
    Denidni, T.-A., & Habib, M.-A. (2006). Broadband printed CPW-fed circular slot antenna. Electronics Letters,42(3), 135–136.CrossRefGoogle Scholar
  19. 19.
    Li, P., Liang, J., & Chen, X. (2006). Study of printed elliptical/circular slot antennas for ultra wideband applications. IEEE Transactions on Antennas and Propagation,54(6), 1670–1675.CrossRefGoogle Scholar
  20. 20.
    Lim, K.-S., Nagalingam, M., & Tan, C.-P. (2008). Design and construction of microstrip UWB antenna with time domain analysis. Progress in Electromagnetics Research M,3, 153–164.CrossRefGoogle Scholar
  21. 21.
    Angelopoulos, E.-S., Anastopoulos, A.-Z., Kaklamani, D.-I., Alexandridis, A.-A., Lazarakis, F., & Dangakis, K. (2006). Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultra wideband applications. IEEE Antennas and Wireless Propagation Letters,5, 294–297.CrossRefGoogle Scholar
  22. 22.
    Azim, R., & Islam, M.-T. (2013). Compact planar UWB antenna with band notch characteristics for WLAN and Dsrc. Progress in Electromagnetics Research,133, 391–406.CrossRefGoogle Scholar
  23. 23.
    Kim, C., Jang, J., Jung, Y., Lee, H., Kim, J., Park, S., et al. (2009). Design of a frequency notched UWB antenna using a slot type SRR. AEUE-International Journal of Electronics and Communications,67, 1087–1093.CrossRefGoogle Scholar
  24. 24.
    Li, Y., Yang, X., Liu, C., & Jiang, T. (2012). Miniaturization cantor set fractal UWB antenna with a notch band characteristic. Microwave and Optical Technology Letters,54(5), 1227–1230.CrossRefGoogle Scholar
  25. 25.
    Li, Y., Li, W., & Ye, Q. (2014). A compact circular slot UWB antenna with multimode reconfigurable band-notched characteristics using resonator and switch techniques. Microwave and Optical Technology Letters,56(3), 570–574.CrossRefGoogle Scholar
  26. 26.
    Li, Y., Li, W., & Mittra, R. (2013). A CPW-fed wide-slot antenna with reconfigurable notch bands for UWB and multi-band communication applications. Microwave and Optical Technology Letters,55(11), 2777–2782.CrossRefGoogle Scholar
  27. 27.
    Li, Y., Li, W., & Yu, W. (2013). A compact reconfigurable antenna using SIRs and switches for ultra wideband and multi-band wireless communication applications. Applied Computational Electromagnetics Society Journal,28(5), 427–440.Google Scholar
  28. 28.
    Li, Y., Li, W., & Yu, W. (2013). A multi-band/UWB MIMO/diversity antenna with an enhance isolation using radial stub loaded resonator. Applied Computational Electromagnetics Society Journal,28(1), 8–20.Google Scholar
  29. 29.
    Li, Y., Li, W., & Ye, Q. (2013). A reconfigurable wide slot antenna integrated with SIRs for UWB/multi-band communication applications. Microwave and Optical Technology Letters,55(1), 52–55.CrossRefGoogle Scholar
  30. 30.
    Sarkar, M., Dwari, S., & Daniel, A. (2013). Compact printed monopole antenna for ultra-wideband application with dual band-notched characteristic. Microwave and Optical Technology Letters,55(11), 2595–2600.CrossRefGoogle Scholar
  31. 31.
    Yang, B., & Qu, S. (2017). A compact integrated Bluetooth UWB dual-band notch antenna for automotive communications. AEUE-International Journal of Electronics and Communications,80, 104–113.CrossRefGoogle Scholar
  32. 32.
    Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/Wi-MAX application. AEUE-International Journal of Electronics and Communications,69(1), 274–280.CrossRefGoogle Scholar
  33. 33.
    Raval, F., Koshta, Y.-P., & Joshi, H. (2015). Reduced size patch antenna using complementary split ring resonator as defected ground plane. AEUE-International Journal of Electronics and Communications,69(8), 1126–1133.CrossRefGoogle Scholar
  34. 34.
    Khalilzadeh, A., Tan, A.-E.-C., & Rambabu, K. (2013). Design of an integrated UWB antenna with dual band notch characteristics. AEUE-International Journal of Electronics and Communications,67, 433–437.CrossRefGoogle Scholar
  35. 35.
    Choukiker, Y.-K., & Behera, S.-K. (2014). Modified sierpinski square fractal antenna covering ultra-wideband application with band notch characteristics. IET Microwaves, Antennas & Propagation,8(7), 506–512.CrossRefGoogle Scholar
  36. 36.
    Tsai, L.-C. (2017). A ultrawideband antenna with dual-band notch filters. Microwave and Optical Technology Letters,59, 1856–1861.CrossRefGoogle Scholar
  37. 37.
    Waheed, N., Saadat, A., Zubair, M.-U., Sadiq, M.-Z., Ahmad, T., Rasool, M., et al. (2017). Ultra-wideband antenna with WLAN and WiMAX band notch characteristic. In IEEE international conference on communication computing and digital systems (C-CODE) (pp. 101–106). http://dx.doi.org/10.1109/C-CODE.2017.7918190.
  38. 38.
    Ahmed, Z., Perwasha, G., Shahid, S., Zahra, H., Saleem, I., & Abbas, S.-M. (2013). Ultra wideband antenna with WLAN band-notch characteristic. In IEEE international conference on computer, cont and comm (IC4). http://dx.doi.org/10.1109/IC4.2013.6653762.
  39. 39.
    Azim, R., Mobashsher, A.-T., & Islam, M.-T. (2013). UWB antenna with notched band at 5.5 GHz. IET Electronics Letters,49(15), 922–924.CrossRefGoogle Scholar
  40. 40.
    Moghadasi, M.-N., Sadeghzadeh, R.-A., Asadpor, L., Soltani, S., & Virdee, B.-S. (2010). Improved band-notch technique for ultra-wideband antenna. IET Microwaves, Antennas & Propagation,4(11), 1886–1891.CrossRefGoogle Scholar
  41. 41.
    Mansouri, Z., Zarrabi, F.-B., & Arezoomand, A.-S. (2017). Multi notch-band CPW-fed circular-disk UWB antenna using underground filter. International Journal of Electronics Letters,6(2), 204–213.CrossRefGoogle Scholar
  42. 42.
    Denidni, T.-A., & Weng, Z. (2011). Hybrid ultra wideband dielectric resonator antenna and band-notched designs. IET Microwaves, Antennas & Propagation,5(4), 450–458.CrossRefGoogle Scholar
  43. 43.
    Zhu, F., Gao, S., Ho, A.-T.-S., See, C.-H., Abd-Alhameed, R.-A., Li, J., et al. (2012). Dual band-notched tapered slot antenna using λ/4 band-stop filters. IET Microwaves, Antennas and Propagation,6(15), 1665–1673.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringAmritsar College of Engineering and TechnologyAmritsarIndia
  2. 2.Electronics and Communication Engineering Department, Yadavindra College of Engineering and TechnologyPunjabi University Guru Kashi CampusTalwandi Sabo, BathindaIndia
  3. 3.Department of Electronics and Communication EngineeringGurukula Kangri VishwavidyalayaHaridwarIndia

Personalised recommendations