Advertisement

Improved Underwater Horizontal Ranging Algorithm using Reflected Acoustic Wave

  • Ho Kyoung Lee
  • Ju Hyun Cheon
  • Byung Moo LeeEmail author
Article
  • 8 Downloads

Abstract

In this paper, we propose an underwater ranging algorithm that estimates horizontal distance using reflected acoustic waves that have the largest sound pressure. We calculate sound pressure of received waves along the horizontal distance, and generate a table for the horizontal distance section according to the number of reflections of the largest sound pressure wave. We also estimate candidate distances based on the number of reflections and on ray tracing. Estimated horizontal distance can be derived by comparing the candidate distances with the generated table. We show that the proposed scheme is useful in long range environments where direct waves arrive weaker or later than reflected waves.

Keywords

Underwater Ranging Ray Tracing 

Notes

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (Grant No. NRF-2019R1A4A1023746) and Korea Electric Power Corporation (Grants R18XA02).

References

  1. 1.
    Mangrio, H. B., Baqai, A., Umrani, F. A., & Hussain, R. (2018). Effects of modulation scheme on experimental setup of RGB LEDs. Wireless Personal Communications, 106(4), 1827–1839.CrossRefGoogle Scholar
  2. 2.
    Lin, C.-F., Chang, S.-H., Lee, C.-C., Wu, W.-C., Chen, W.-H., Chang, K.-H., et al. (2013). Underwater acoustic multimedia communication based on MIMO-OFDM. Wireless Personal Communications, 71(2), 1231–1245.CrossRefGoogle Scholar
  3. 3.
    Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.CrossRefGoogle Scholar
  4. 4.
    Li, J., Wang, Y., Bastard, C. L., Wei, G., Ma, B., Sun, M., et al. (2017). Simplified high-order DOA and range estimation with linear antenna array. IEEE Communications Letters, 21(1), 76–79.CrossRefGoogle Scholar
  5. 5.
    Yan, W., Fang, X., & Li, J. (2014). Formation optimization for AUV localization with range-dependent measurements noise. IEEE Communications Letters, 18(9), 1579–1582.CrossRefGoogle Scholar
  6. 6.
    Sendra, S., Lloret, J., Rodrigues, J. J. P. C., & Aguiar, J. M. (2013). Underwater wireless communications in freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794–1797.CrossRefGoogle Scholar
  7. 7.
    Lee, B. M., & Yang, H. (2018). Massive MIMO for industrial internet of things in cyber-physical systems. IEEE Transactions on Industrial Informatics, 14(6), 2641–2652.CrossRefGoogle Scholar
  8. 8.
    Lee, B. M. (2018). Energy efficient selected mapping schemes based on antenna grouping for industrial massive MIMO-OFDM antenna systems. IEEE Transactions on Industrial Informatics, 14(11), 4804–4814.CrossRefGoogle Scholar
  9. 9.
    Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I, the essential algorithms. Robotics and Automation, 13(2), 99–108.CrossRefGoogle Scholar
  10. 10.
    Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II, state of the art. Robotics and Automation, 13(3), 108–117.CrossRefGoogle Scholar
  11. 11.
    Doukhnitch, E., Salamah, M., & Ozen, E. (2008). An efficient approach for trilateration in 3D positioning. Computer Communications, 31(17), 4124–4129.CrossRefGoogle Scholar
  12. 12.
    Chandrasekhar, V., Seah, W.K., Choo, Y.S., & Ee, H.V. (2006). Localization in underwater sensor networks: Survey and challenges. In Proceeding 1st ACM international workshop on underwater network (UWNet ’06) (pp 33–40).Google Scholar
  13. 13.
    Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.CrossRefGoogle Scholar
  14. 14.
    Tan, H.-P., Diamant, R., Seahc, W. K. G., & Waldmeyer, M. (2011). A survey of techniques and challenges in underwater localization. Journal Ocean Engineering, 38, 1663–1676.CrossRefGoogle Scholar
  15. 15.
    Ramezani, H., Jamali-Rad, H., & Leus, G. (2012). Target localization and tracking for an isogradient sound speed profile. IEEE Transactions on Signal Processing, 61(6), 1434–1446.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Porter, M. B. (2011). The BELLHOP manual and user’s guide : Preliminary draft. Heat Light and Sound Research Inc, LaJolla, CA, USA: Technical ReportGoogle Scholar
  17. 17.
    Ziomek, L. J. (1994). Sound-pressure level calculations using the RRA algorithm for depth-dependent speeds of sound valid at turning points and focal points. IEEE Journal of Oceanic Engineering, 19(2), 242–248.CrossRefGoogle Scholar
  18. 18.
    Porter, M. B., & Homer, H. P. (1987). Gaussian beam tracing for computing ocean acoustic fields. Journal of the Acoustical Society of America, 82(4), 1349–1359.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Electrical EngineeringHongik UniversitySeoulSouth Korea
  2. 2.School of of Intelligent Mechatronics EngineeringSejong UniversitySeoulSouth Korea

Personalised recommendations